Skip to main content
Log in

A Fast and Effective Method for Packing Nano-LC Columns with Solid-Core Nano Particles Based on the Synergic Effect of Temperature, Slurry Composition, Sonication and Pressure

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Nano-LC columns of different lengths (14–35 cm), 75 μm i.d., were packed with solid-core C18 particles using a conventional HPLC system at low pressure (375 bar) and without expensive tools and fittings. Solid-core particles consist of a solid, non-porous core surrounded with a shell of a porous layer with a very narrow particle size distribution. This geometry allows a faster diffusion of the analytes compared to porous particles, reducing the C term of the Knox plot. Different slurries of packing material were evaluated and tested. The packing procedure was carried out at room temperature and at 70 °C to evaluate the influence of this parameter on the overall process. The synergic action of pressure, temperature and sonication contributed to columns of various lengths in the packing process. The columns were tested at room temperature taking into account the following parameters: Knox plots, specific permeability and peak capacity. Reduced heights of theoretical plates, h, ranged between 3.8 and 5.1 at ν between 2 and 6. An LC-MS test was carried out with a Direct-EI LC-MS instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horváth C, Preiss BA, Lipsky SR (1967) Anal Chem 39:1422–1428

    Article  Google Scholar 

  2. Horvath C, Lipsky SR (1969) J Chromatogr Sci 7:109–116

    Article  CAS  Google Scholar 

  3. Kirkland JJ (1969) J Chromatogr Sci 7:7–12

    Article  CAS  Google Scholar 

  4. Kirkland JJ (1969) US Patent 3:505–785

    Google Scholar 

  5. Kirkland JJ (1969) Anal Chem 41:218–220

    Article  CAS  Google Scholar 

  6. Guoichon G, Gritti F (2011) J Chromatogr A 1218:1915–1938

    Article  Google Scholar 

  7. De Stefano JJ, Langlois TJ, Kirkland JJ (2008) J Chromatogr Sci 46:254–260

    Article  Google Scholar 

  8. Cavazzini A, Gritti F, Kaczmarski K, Marchetti N, Guiochon G (2007) Anal Chem 79:5972–5979

    Article  CAS  Google Scholar 

  9. Gritti F, Guiochon G, Cavazzini A, Marchetti N (2007) J Chromatogr A 1157:289–303

    Article  CAS  Google Scholar 

  10. Gritti F, Leonardis I, Shock D, Stevenson P, Shalliker A, Guiochon G (2010) J Chromatogr A 1217:1589–1603

    Article  CAS  Google Scholar 

  11. Fekete S, Olah E, Fekete J (2011) J Chromatogr A 1228:57–71

    Google Scholar 

  12. Baker J, Vinci JC, Moore AD, Colón LA (2010) J Sep Sci 33:2547–2557

    Article  CAS  Google Scholar 

  13. Gritti F, Guiochon G (2012) J Chromatogr A 1228:2–19

    Article  CAS  Google Scholar 

  14. Fekete S, Fekete J (2011) Talanta 84:416–423

    Article  CAS  Google Scholar 

  15. Kirkland JJ (1992) Anal Chem 64:1239–1245

    Article  CAS  Google Scholar 

  16. Felinger A (2011) J Chromatogr A 1218:1939–1941

    Article  CAS  Google Scholar 

  17. Causon TJ, Broeckhoven K, Hilder EF, Shellie RA, Desmet G, Eeltink S (2011) J Sep Sci 34:877–887

    Article  CAS  Google Scholar 

  18. Knox JH (1999) J Chromatogr A 831:3–15

    Article  CAS  Google Scholar 

  19. Lanças FM, Rodrigues JC, de Freitas SS (2004) J Sep Sci 27:1475–1482

    Article  Google Scholar 

  20. Unger KK, Skudas R, Schulte MM (2008) J Chromatogr A 1184:393–415

    Article  CAS  Google Scholar 

  21. Kirkland JJ (1971) J Chromatogr Sci 9:206–214

    Article  CAS  Google Scholar 

  22. Asshauer J, Halasz I (1974) J Chromatogr Sci 12:139–147

    Article  CAS  Google Scholar 

  23. Verzele M (1984) J Chromatogr A 295:81–87

    Article  CAS  Google Scholar 

  24. Liao JC, Ponzo JL (1982) J Chromatogr Sci 20:14–18

    Article  CAS  Google Scholar 

  25. Karlsson K, Novotny M (1988) Anal Chem 60:1662–1665

    Article  CAS  Google Scholar 

  26. Ehlert S, Roesler T, Tallarek U (2008) J Sep Sci 31:1719–1728

    Article  CAS  Google Scholar 

  27. Fermier AM, Colón LA (1998) J Microcolumn Sep 10:439–447

    Article  CAS  Google Scholar 

  28. Bruns S, Tallarek U (2011) J Chromatogr A 1218:1849–1860

    Article  CAS  Google Scholar 

  29. Daneyko A, Hlushkou D, Khirevich S, Tallarek U (2012) J Chromatogr A 1257:98–115

    Article  CAS  Google Scholar 

  30. Shih CY, Chen Y, Xie J, He Q, Tai YC (2006) J Chromatogr A 1111:272–278

    Article  CAS  Google Scholar 

  31. Patel KD, Jerkovich AD, Link JC, Jorgenson JW (2004) Anal Chem 76:5777–5786

    Article  CAS  Google Scholar 

  32. Fanali S, Aturki Z, D’Orazio G, Rocco A (2007) J Chromatogr A 1150:252–258

    Article  CAS  Google Scholar 

  33. D’Orazio G, Rocchi S, Fanali S (2012) J Chromatogr A 1255:277–285

    Article  Google Scholar 

  34. Cappiello A, Famiglini G, Pierini E, Palma P, Trufelli H (2007) Anal Chem 79:5364–5372

    Article  CAS  Google Scholar 

  35. Cappiello A, Famiglini G, Palma P, Siviero A (2005) Mass Spectrom Rev 24:978–989

    Article  CAS  Google Scholar 

  36. Cappiello A, Palma P (2007) In: Cappiello A (ed) Advances in LC-MS instrumentation, vol 72 (Journal of Chromatography Library), Elsevier, Amsterdam

  37. Cappiello A, Famiglini G, Palma P, Siviero A (2005) Mass Spectrom Rev 24:978–989

    Article  CAS  Google Scholar 

  38. Knox H, Ross P (1997) Adv Chromatogr 37:73–119

    CAS  Google Scholar 

  39. Ross P LCGC Europe (2000) 13:310–319

  40. Pereira L, Aspey S, Ritchie H (2007) J Sep Sci 30:1115–1124

    Article  CAS  Google Scholar 

  41. Carr PW, Hu Y, Li J (1997) Anal Chem 69:3884–3888

    Article  Google Scholar 

  42. Sun J, Carr PW (1995) Anal Chem 67:3717–3721

    Article  CAS  Google Scholar 

  43. Leonardis I, Capriotti F, Cappiello A, Famiglini G, Palma P (2012) J Sep Sci 35:1589–1595

    Article  CAS  Google Scholar 

  44. Bristow PA, Knox JH (1977) Chromatographia 10:279–289

    Article  CAS  Google Scholar 

  45. Mayors RE (2004) LCGC Asia Pacific 7:1124–1133

    Google Scholar 

  46. Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography, 3rd edn. Wiley, New York

    Google Scholar 

  47. Neue UD (1997) HPLC Columns: theory technology and practice. Wiley-VCH, New York

    Google Scholar 

  48. Baker JS, Vinci JC, Moore AD, Colón LA (2010) J Sep Sci 33:2547–2557

    Article  CAS  Google Scholar 

  49. Fanali S, Camera E, Chankevetadze B, D’Orazio G, Quaglia MG (2004) J Pharm Biomed Anal 35:331–337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangela Palma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capriotti, F., Leonardis, I., Cappiello, A. et al. A Fast and Effective Method for Packing Nano-LC Columns with Solid-Core Nano Particles Based on the Synergic Effect of Temperature, Slurry Composition, Sonication and Pressure. Chromatographia 76, 1079–1086 (2013). https://doi.org/10.1007/s10337-013-2514-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2514-7

Keywords

Navigation