Skip to main content
Log in

Simultaneous Determination of Ten Nucleosides and Related Compounds by MEEKC with [BMIM]PF6 as Oil Phase

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In the present study, four nucleobases (adenine, cytosine, uracil, thymine), four nucleosides (adenosine, cytidine, uridine, thymidine), and two nucleotides (adenosine-5′-monophosphate, and cytidine-5′-monophosphate) were simultaneously determined by MEEKC with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) as oil phase. Experimental parameters including the microemulsion compositions (surfactant, co-surfactant, and oil phase), pH, and concentration of borate buffer were intensively investigated. Finally, the ten compounds were well separated within 11 min using the running buffer composed of 140 mM SDS, 1.8 M n-butanol, and 10 mM [BMIM]PF6 in 20 mM borate buffer of pH 9.0. The developed method was successfully applied to determine the contents of investigated compounds in three different widely used traditional Chinese medicines (cultured Cordyceps sinensis, Radix Astragali, and Radix Isatidis). The results indicated that the developed MEEKC method could be used for the rapid determination of nucleobases, nucleosides, and nucleotides in herbal medicines or other complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen G, Han X, Zhang L, Ye J (2002) Determination of purine and pyrimidine bases in DNA by micellar electrokinetic capillary chromatography with electrochemical detection. J Chromatogr A 954:267–276

    Article  CAS  Google Scholar 

  2. Gudbjornsson B, Zak A, Niklasson F, Hallgren R (1991) Hypoxanthine, xanthine, and urate in synovial fluid from patients with inflammatory arthritides. Ann Rheum Dis 50:669–672

    Article  CAS  Google Scholar 

  3. Isono K (1991) Current progress on nucleoside antibiotics. Pharmac Ther 52:269–286

    Article  CAS  Google Scholar 

  4. Schmidt AP, Lara DR, de Faria Maraschin J, da Silveira Perla A, Onofre Souza D (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864:40–43

    Article  CAS  Google Scholar 

  5. Virag L, Szabo C (2001) Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J 15:99–107

    Article  CAS  Google Scholar 

  6. Schaller JP, Kuchan MJ, Thomas DL, Cordle CT, Winship TR, Buck RH, Baggs GE, Wheeler JG (2004) Effect of dietary ribonucleotides on infant immune status. part 1: humoral responses. Pediatr Res 56:883–890

    Article  CAS  Google Scholar 

  7. Sánchez-Pozo A, Gil A (2002) Nucleotides as semiessential nutritional components. Br J Nutr 87:S135–S137

    Article  Google Scholar 

  8. Schlimme E, Martin D, Meisel H (2000) Nucleosides and nucleotides: natural bioactive substances in milk and colostrum. Br J Nutr 84:S59–S68

    Article  CAS  Google Scholar 

  9. Itoh K, Konno T, Sasaki T, Ishiwata S, Ishida N, Misugaki M (1992) Relationship of urinary pseudouridine and 1-methyladenosine to activity of leukemia and lymphoma. Clin Chim Acta 206:181–189

    Article  CAS  Google Scholar 

  10. Zheng YF, Yang J, Zhao XJ, Feng B, Kong HW, Chen YJ, Lv S, Zheng MH, Xu GW (2005) Urinary nucleosides as biological markers for patients with colorectal cancer. World J Gastroenterol 11:3871–3876

    CAS  Google Scholar 

  11. Zheng YF, Kong HW, Xiong JH, Lv S, Xu GW (2005) Clinical significance and prognostic value of urinary nucleosides in breast cancer patients. Clin Biochem 38:24–30

    Article  CAS  Google Scholar 

  12. Ishiwata S, Itoh K, Yamaguchi T, Ishida N, Mizugaki M (1995) Comparison of serum and urinary levels of modified nucleoside, 1-methyladenosine, in cancer patients using a monoclonal antibody-based inhibition ELISA. Tohoku J Exp Med 176:61–68

    Article  CAS  Google Scholar 

  13. Sasco AJ, Rey F, Reynaud C, Bobin JY, Clavel M, Niveleau A (1996) Breast cancer prognostic significance of some modified urinary nucleosides. Cancer Lett 108:157–162

    Article  CAS  Google Scholar 

  14. Tran NQ, Tabor S, Amarasiriwardena CJ, Kulczyk AW, Richardson CC (2012) Characterization of a nucleotide kinase encoded by bacteriophage T7. J Biol Chem 287:29468–29478

    Article  CAS  Google Scholar 

  15. Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275:31199–31203

    Article  CAS  Google Scholar 

  16. Yu L, Zhao J, Li SP, Fan H, Hong M, Wang YT, Zhu Q (2006) Quality evaluation of Cordyceps through simultaneous determination of eleven nucleosides and bases by RP-HPLC. J Sep Sci 29:953–958

    Article  CAS  Google Scholar 

  17. Wang S, Yang FQ, Feng K, Li DQ, Zhao J, Li SP (2009) Simultaneous determination of nucleosides, myriocin, and carbohydrates in Cordyceps by HPLC coupled with diode array detection and evaporative light scattering detection. J Sep Sci 32:4069–4076

    Article  CAS  Google Scholar 

  18. Yan S, Luo G, Wang Y, Cheng Y (2006) Simultaneous determination of nine components in Qingkailing injection by HPLC/ELSD/DAD and its application to the quality control. J Pharm Biomed Anal 40:889–895

    Article  CAS  Google Scholar 

  19. Qian ZM, Wan JB, Zhang QW, Li SP (2008) Simultaneous determination of nucleobases, nucleosides and saponins in Panax notoginseng using multiple columns high performance liquid chromatography. J Pharm Biomed Anal 48:1361–1367

    Article  CAS  Google Scholar 

  20. Cao XW, Li J, Chen SB, Li XB, Xiao PG, Chen SL, Yang DJ (2010) Simultaneous determination of nine nucleosides and nucleobases in different Fritillaria species by HPLC-diode array detector. J Sep Sci 33:1587–1594

    Article  CAS  Google Scholar 

  21. Ranogajec A, Beluhan S, Smit Z (2010) Analysis of nucleosides and monophosphate nucleotides from mushrooms with reversed-phase HPLC. J Sep Sci 33:1024–1033

    CAS  Google Scholar 

  22. Huang LF, Liang YZ, Guo FQ, Zhou ZF (2003) Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militarris by LC/ESI-MS. J Pharm Biomed Anal 33:1155–1162

    Article  CAS  Google Scholar 

  23. Guo FQ, Li A, Huang LF, Liang YZ, Chen BM (2006) Identification and determination of nucleosides in Cordyceps sinensis and its substitutes by high performance liquid chromatography with mass spectrometric detection. J Pharm Biomed Anal 40:623–630

    Article  CAS  Google Scholar 

  24. Gao JL, Leung KS, Wang YT, Lai CM, Li SP, Hu LF, Lu GH, Jiang ZH, Yu ZL (2007) Qualitative and quantitative analyses of nucleosides and nucleobases in Ganoderma spp. by HPLC-DAD-MS. J Pharm Biomed Anal 44:807–811

    Article  CAS  Google Scholar 

  25. Brink A, Lutz U, Völkel W, Lutz WK (2006) Simultaneous determination of O6-methyl-2′-deoxyguanosine, 8-oxo-7,8-dihydro-2′-deoxyguanosine, and 1, N6-etheno-2′-deoxyadenosine in DNA using on-line sample preparation by HPLC column switching coupled to ESI-MS/MS. J Chromatogr B Biomed Appl 830:255–261

    Article  CAS  Google Scholar 

  26. Childs KF, Ning XH, Bolling SF (1996) Simultaneous detection of nucleotides, nucleosides and oxidative metabolites in myocardial biopsies. J Chromatogr B Biomed Appl 678:181–186

    Article  CAS  Google Scholar 

  27. Li SP, Li P, Dong TT, Tsim KW (2001) Determination of nucleosides in natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary electrophoresis. Electrophoresis 22:144–150

    Article  CAS  Google Scholar 

  28. Gong YX, Li SP, Li P, Liu JJ, Wang YT (2004) Simultaneous determination of six main nucleosides and bases in natural and cultured Cordyceps by capillary electrophoresis. J Chromatogr A 1055:215–221

    Article  CAS  Google Scholar 

  29. Wang W, Zhou L, Wang S, Luo Z, Hu Z (2008) Rapid and simple determination of adenine and guanine in DNA extract by micellar electrokinetic chromatography with indirect laser-induced fluorescence detection. Talanta 74:1050–1055

    Article  CAS  Google Scholar 

  30. Zhu ZF, Yan N, Zhou X, Zhou L, Chen X (2009) Simultaneous enrichment and separation of neutral and anionic analytes through combining large volume sample stacking with sweeping in CE. J Sep Sci 32:3481–3488

    Article  CAS  Google Scholar 

  31. Jiang Y, Ma Y (2009) A fast capillary electrophoresis method for separation and quantification of modified nucleosides in urinary samples. Anal Chem 81:6474–6480

    Article  CAS  Google Scholar 

  32. Yang FQ, Li S, Li P, Wang YT (2007) Optimization of CEC for simultaneous determination of eleven nucleosides and nucleobases in Cordyceps using central composite design. Electrophoresis 28:1681–1688

    Article  CAS  Google Scholar 

  33. Lin SY, Chen WH, Liu CY (2002) Nucleoside monophosphates recognition using macrocyclic polyamine bonded phase in capillary electrochromatography. Electrophoresis 23:1230–1238

    Article  CAS  Google Scholar 

  34. Yu L, Chu K, Ye H, Liu X, Xu X, Chen G (2012) Recent advances in microemulsion electrokinetic chromatography. TrAC Trends Anal Chem 34:140–151

    Article  CAS  Google Scholar 

  35. Ryan R, Altria K, McEvoy E, Donegan S, Power J (2013) A review of developments in the methodology and application of microemulsion electrokinetic chromatography. Electrophoresis 34:159–177

    Article  CAS  Google Scholar 

  36. Furumoto T, Fukumoto T, Sekiguchi M, Sugiyama T, Watarai H (2001) Migration mechanism of bases and nucleosides in oil-in-water microemulsion capillary electrophoresis. Electrophoresis 22:3438–3443

    Article  CAS  Google Scholar 

  37. Moniruzzamana M, Kamiyaab N, Nakashimaa K, Goto M (2008) Water-in-ionic liquid microemulsions as a new medium for enzymatic reactions. Green Chem 10:497–500

    Article  Google Scholar 

  38. Safavi A, Maleki N, Farjami F (2010) Phase behavior and characterization of ionic liquids based microemulsions. Colloids Surf A 355:61–66

    Article  CAS  Google Scholar 

  39. Eastoe J (2005) Ionic liquid-in-oil microemulsions. J Am Chem Soc 127:7302–7303

    Article  CAS  Google Scholar 

  40. Gao H, Li J, Han B (2004) Microemulsions with ionic liquid polar domains. Phys Chem Chem Phys 6:2914–2916

    Article  CAS  Google Scholar 

  41. Merrigan T L, Bates E D, Dorman S C, Davis J H (2000) New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids. Chem Commun 2000:2051–2052

  42. Kunz W, Zemb T, Harrar A (2012) Using ionic liquids to formulate microemulsions: current state of affairs. Curr Opin Colloid Interface Sci 17:205–211

    Article  CAS  Google Scholar 

  43. Li SP, Yang FQ, Tsim KW (2006) Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal 41:1571–1584

    Article  CAS  Google Scholar 

  44. Rathbone MP, Middlemiss PJ, Gysbers JW, DeForge S, Costello P, Del Maestro RF (1992) Purine nucleosides and nucleotides stimulate proliferation of a wide range of cell types. In Vitro Cell Dev Biol 28:529–536

    Article  Google Scholar 

  45. Altria KD (2000) Background theory and applications of microemulsion electrokinetic chromatography. J Chromatogr A 892:171–186

    Article  CAS  Google Scholar 

  46. Gabel-Jensen C, Honoré Hansen S, Pedersen-Bjergaard S (2001) Separation of neutral compounds by microemulsion electrokinetic chromatography: fundamental studies on selectivity. Electrophoresis 22:1330–1336

    Article  CAS  Google Scholar 

  47. Altria KD, Mahuzier PE, Clark BJ (2003) Background and operating parameters in microemulsion electrokinetic chromatography. Electrophoresis 24:315–324

    Article  CAS  Google Scholar 

  48. Klampfl CW (2003) Solvent effects in microemulsion electrokinetic chromatography. Electrophoresis 24:1537–1543

    Article  CAS  Google Scholar 

  49. Yang FQ, Ge L, Yong JW, Tan SN, Li SP (2009) Determination of nucleosides and nucleobases in different species of Cordyceps by capillary electrophoresis–mass spectrometry. J Pharm Biomed Anal 50:307–314

    Article  CAS  Google Scholar 

  50. Zhang Y-J, Qian Z-M, Chen X-J, Yang F-Q, Li S-P (2010) Simultaneous HPLC determination of uridine, adenine, guanosine, and adenosine in six tonic traditional Chinese medicines. Chin J Pharm Anal 30:33–36 (in Chinese)

    Google Scholar 

  51. Guo H, Chen R, Li F, Bi K, Sun Y (2004) Determination of four nucleosides in banlangen injections using capillary zone electrophoresis. Chin J Chromatogr 22:539–542 (in Chinese)

    CAS  Google Scholar 

  52. Zhou W, Zhang X, Xie M, Chen Y, Li Y, Duan G (2010) Infrared-assisted extraction of adenosine from Radix Isatidis using orthogonal experimental design and LC. Chromatographia 72:719–724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21175159, 21275169 and 81202886), the International Cooperation Project of Ministry of Science and Technology (2010DFA32680), and the Fundamental Research Funds for the Central Universities (No. CDJXS11232242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ning Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Yang, FQ. & Xia, ZN. Simultaneous Determination of Ten Nucleosides and Related Compounds by MEEKC with [BMIM]PF6 as Oil Phase. Chromatographia 76, 1003–1011 (2013). https://doi.org/10.1007/s10337-013-2507-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2507-6

Keywords

Navigation