Skip to main content

Advertisement

Log in

Determination of Sulfonamides in Pharmaceuticals and Rabbit Plasma by Microchip Electrophoresis with LED-IF Detection

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this paper, we describe a compact and low-cost light-emitting diode-induced fluorescence (LED-IF) detection coupled to microchip electrophoresis for the determination of sulfonamides in pharmaceutical formulations and rabbit plasma. Three fluorescein isothiocyanate-labeled sulfonamides in rabbit plasma were separated in the running buffer of 40 mM phosphate buffer (pH 7.0) at the separation voltage of 2.0 kV, and detected by LED-IF detector in which the high-power blue LED was driven at the constant current of 150 mA and the emitted fluorescence over 510 nm was collected by a planar photodiode. The linear concentration ranged from 2.0 to 125.0 μg mL−1, both for sulfadiazine and sulfamethazine with the correlation coefficients (r 2) of 0.995 and 0.997, respectively, and from 2.0 to 100.0 μg mL−1 with the correlation coefficients (r 2) of 0.997 for sulfaguanidine. The limits of detection for the three sulfonamides were 0.36–0.50 μg mL−1 (S/N = 3). Intra-day and inter-day precision of migration time and peak area for the determination of sulfonamides were <4.5 %. This method has been successfully applied to the analysis of sulfonamides in pharmaceuticals, and could be used to study the pharmacokinetics of sulfonamides in rabbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pérez-Fernández V, Domínguez-Vega E, Crego AL, García MÁ, Marina ML (2012) Electrophoresis 33:127–146

    Article  Google Scholar 

  2. Malmborg A-S, Rane A (1984) Scand J Infect Dis 16:309–314

    Article  CAS  Google Scholar 

  3. Sun L, Chen LG, Sun X, Du XB, Yue YS, He DQ, Xu HY, Zeng QL, Wang H, Ding L (2009) Chemosphere 77:1306–1312

    Article  CAS  Google Scholar 

  4. Wen YY, Li JH, Zhang WW, Chen LX (2011) Electrophoresis 32:2131–2138

    Article  CAS  Google Scholar 

  5. Cross RF, Cao J (1997) J Chromatogr A 786:171–180

    Article  CAS  Google Scholar 

  6. Cross RF, Cao J (1998) J Chromatogr A 809:159–171

    Article  CAS  Google Scholar 

  7. Cross RF, Cao J (1998) J Chromatogr A 818:217–229

    Article  CAS  Google Scholar 

  8. Cross RF, Cao J (1999) J Chromatogr A 849:575–585

    Article  CAS  Google Scholar 

  9. Cross RF, Smairl AM (2001) J Chromatogr A 929:113–121

    Article  CAS  Google Scholar 

  10. Cross RF (2001) J Chromatogr A 907:357–360

    Article  CAS  Google Scholar 

  11. Lin CE, Lin WC, Chiou WC, Lin EC, Chang CC (1996) J Chromatogr A 755:261–269

    Article  CAS  Google Scholar 

  12. Lin CE, Lin WC, Chen YC, Wang SW (1997) J Chromatogr A 792:37–47

    Article  CAS  Google Scholar 

  13. Lin CE, Chang CC, Lin WC (1997) J Chromatogr A 759:203–209

    Article  CAS  Google Scholar 

  14. Lin CE, Chang CC, Lin WC (1997) J Chromatogr A 768:105–112

    Article  CAS  Google Scholar 

  15. Soto-Chinchilla JJ, Gámiz-Gracia L, García-Campaña AM, Imai K, García-Ayuso LE (2005) J Chromatogr A 1095:60–67

    Article  CAS  Google Scholar 

  16. Liu HY, Ren JJ, Hao YH, He PG, Fang YZ (2007) Talanta 72:1036–1041

    Article  CAS  Google Scholar 

  17. Casella IG, Contursi M, Gioia D (2012) Electroanalysis 24:2125–2133

    Article  CAS  Google Scholar 

  18. Zhang HY, Wang S (2009) J Immunol Methods 350:1–13

    Article  CAS  Google Scholar 

  19. Białk-Bielińska A, Kumirska J, Palavinskas R, Stepnowski P (2009) Talanta 80:947–953

    Article  Google Scholar 

  20. Ouyang Z, Cooks RG (2009) Annu Rev Anal Chem 2:187–214

    Article  CAS  Google Scholar 

  21. Manz A, Graber N, Widmer HM (1990) Sens Actuators, B 1:244–248

    Article  CAS  Google Scholar 

  22. Hofmann O, Wang XH, Cornwell A, Beecher S, Raja A, Bradley DDC, de Mello AJ, de Mello JC (2006) Lab Chip 6:981–987

    Article  CAS  Google Scholar 

  23. Chen SP, Wu J, Yu XD, Xu JJ, Chen HY (2010) Anal Chim Acta 665:152–159

    Article  CAS  Google Scholar 

  24. Wu MS, Qian GS, Xu JJ, Chen HY (2012) Anal Chem 84:5407–5414

    Article  CAS  Google Scholar 

  25. Liu C, Mo YY, Chen ZG, Li X, Li OL, Zhou X (2008) Anal Chim Acta 621:171–177

    Article  CAS  Google Scholar 

  26. Lin SL, Bai HY, Lin TY, Fuh MR (2012) Electrophoresis 33:635–643

    Article  CAS  Google Scholar 

  27. Wang LL, Wu J, Wang Q, He CH, Zhou L, Wang J, Pu QS (2012) J Agric Food Chem 60:1613–1618

    Article  CAS  Google Scholar 

  28. María Costi E, Dolores Sicilia M, Rubio S (2010) J Chromatogr A 1217:6250–6257

    Article  Google Scholar 

  29. Hoff RB, Barreto F, Kist TBL (2009) J Chromatogr A 1216:8254–8261

    Article  Google Scholar 

  30. Diez R, Sarabia L, Ortiz MC (2007) Anal Bioanal Chem 388:957–968

    Article  CAS  Google Scholar 

  31. Lamba S, Sanghi SK, Asthana A, Shelke M (2005) Anal Chim Acta 552:110–115

    Article  CAS  Google Scholar 

  32. Xiao D, Yan L, Yuan HY, Zhao SL, Yang XP, Choi MMF (2009) Electrophoresis 30:189–202

    Article  CAS  Google Scholar 

  33. Bruno AE, Maystre F, Krattiger B, Nussbaum P, Gassmann E (1994) Trends Anal Chem 13:190–198

    Article  CAS  Google Scholar 

  34. Macka M, Andersson P, Haddad PR (1996) Electrophoresis 17:1898–1905

    Article  CAS  Google Scholar 

  35. Breadmore MC, Henderson RD, Fakhari AR, Macka M, Haddad PR (2007) Electrophoresis 28:1252–1258

    Article  CAS  Google Scholar 

  36. Wang SP, Li XC, Yang JP, Yang XJ, Hou FH, Chen ZG (2012) Chromatographia 75:1287–1293

    Article  CAS  Google Scholar 

  37. Collins GE, Lu Q, Pereira N, Wu P (2007) Talanta 72:301–304

    Article  CAS  Google Scholar 

  38. Yao B, Luo GA, Wang LD, Gao YD, Lei GT, Ren KN, Chen LX, Wang YM, Hu Y, Qiu Y (2005) Lab Chip 5:1041–1047

    Article  Google Scholar 

  39. Hofmann O, Wang XH, de Mello JC, Bradley DDC, de Mello AJ (2005) Lab Chip 5:863–868

    Article  CAS  Google Scholar 

  40. Yang F, Li XC, Zhang W, Pan JB, Chen ZG (2011) Talanta 84:1099–1106

    Article  CAS  Google Scholar 

  41. Chen ZG, Li QW, Li OL, Zhou X, Lan Y, Wei YF, Mo JY (2007) Talanta 71:1944–1950

    Article  CAS  Google Scholar 

  42. Flurer CL (1997) Electrophoresis 18:2427–2437

    Article  CAS  Google Scholar 

  43. Babić S, Horvat AJM, Mutavdžić Pavlović D, Kaštelan-Macan M (2007) Trends Anal Chem 26:1043–1061

    Article  Google Scholar 

  44. Li F, Ding ZT, Cao QE (2008) Electrophoresis 29:658–664

    Article  CAS  Google Scholar 

  45. Hoff R, Kist TBL (2009) J Sep Sci 32:854–866

    CAS  Google Scholar 

  46. Grondel JL, Nouws JF, Haenen OL (1986) Vet Immunol Immunopathol 12:281–286

    Article  CAS  Google Scholar 

  47. Bratton AC, Marshall EK, Babbitt D, Hendrickson AR (1939) J Biol Chem 128:537–550

    CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (No. 20727006) and Guangdong Provincial Science and Technology Project (No. 2008A030102009) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuanguang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Chen, Z., Yu, Y. et al. Determination of Sulfonamides in Pharmaceuticals and Rabbit Plasma by Microchip Electrophoresis with LED-IF Detection. Chromatographia 76, 821–829 (2013). https://doi.org/10.1007/s10337-013-2479-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2479-6

Keywords

Navigation