Skip to main content
Log in

Size-Exclusion Chromatography of Asphaltenes: An Experimental Comparison of Commonly Used Approaches

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Asphaltenes, the heaviest and most polar fraction of crude oil, are responsible for the clogging of oil pipelines and of underground reservoir rocks. Asphaltenes are defined as a solubility class (toluene- or benzene-soluble, n-alkane insoluble), and a consensus is still lacking on the molar mass (M) averages, distribution, and range of these materials. Size-exclusion chromatography (SEC) is among the most widely employed methods for characterizing the M averages and distributions of both natural and synthetic polymers and, as such, has seen widespread application in the study of asphaltenes. SEC analysis of asphaltenes presents a number of challenges, however, some inherent to all low-M materials and some unique to these particular analytes. Here, we have experimentally compared several of the most commonly used approaches to SEC of asphaltenes, in hope of both demonstrating the influence of experimental conditions upon the results obtained as well as to determine optimal conditions of analysis. In the end, while the former goal was met, the latter one remains an open challenge in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ASTM (2005) ASTM Method D 6560–00. Annual Book of American Society for Testing Materials Standards. ASTM, Philadelphia

    Google Scholar 

  2. Arnauld CN (2009) C&EN 87(38):12–17

    Article  Google Scholar 

  3. Sheu EY (2002) Energy Fuels 16(1):74–82

    Article  CAS  Google Scholar 

  4. Herod AA, Bartle KD, Kandiyoti R (2007) Energy Fuels 21(4):2176–2203

    Article  CAS  Google Scholar 

  5. Mullins OC, Martínez-Haya B, Marshall AG (2008) Energy Fuels 22(3):1765–1773

    Article  CAS  Google Scholar 

  6. Marshall AG, Rodgers RP (2008) Proc Nat Acad Sci 105(47):18090–18905

    Article  CAS  Google Scholar 

  7. Mullins OC, Sheu EY, Hammami A, Marshall AG (eds) (2010) Asphaltenes, heavy oil, and petroleomics. Springer, New York

    Google Scholar 

  8. Moore JC (1964) J Polym Sci A 2:835–843

    Google Scholar 

  9. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  10. Striegel AM (ed) (2005) Multiple detection in size-exclusion chromatography. ACS Symp Ser 893, American Chemical Society, Washington, DC

  11. Striegel AM (2008) Anal Bioanal Chem 390:303–305

    Article  CAS  Google Scholar 

  12. Striegel AM (2005) Anal Chem 77(5):104A–113A

    Article  CAS  Google Scholar 

  13. Striegel AM (2013) In: Fanali S, Haddad PR, Poole CF, Schoenmakers PJ, Lloyd D (eds) Liquid chromatography: fundamentals and instrumentation. Elsevier, Amsterdam, pp 193–223

    Chapter  Google Scholar 

  14. Altgelt KH (1965) Makromol Chem 88:75–89

    Article  CAS  Google Scholar 

  15. Stout CA, Nicksic SW (1971) In: Altgelt KH, Segal L (eds) Gel permeation chromatography. Marcel Dekker, New York

    Google Scholar 

  16. Bunger JW, Li NC (eds) (1981) Chemistry of asphaltenes, Adv Chem Ser 195. American Chemical Society, Washington

    Google Scholar 

  17. Andreatta G, Bostrom N, Mullins OC (2005) Langmuir 21(7):2728–2736

    Article  CAS  Google Scholar 

  18. Behrouzi M, Luckham PF (2008) Energy Fuels 22(3):1792–1798

    Article  CAS  Google Scholar 

  19. Haidar Ahmad IA, Striegel AM (2010) Anal Bioanal Chem 396:1589–1598

    Article  CAS  Google Scholar 

  20. Striegel AM, Alward DB (2002) J Liq Chromatogr Rel Technol 25(13–15):2003–2022. See erratum in Striegel AM, Alward DB (2003) J Liq Chromatogr Rel Technol 26(1):157–158, in which there is a typo: The value of [η] w for PE 282 in TCB at 135°C should be +0.0036 dL g−1

  21. Striegel AM (2004) J Chromatogr A 1033:241–245

    Article  CAS  Google Scholar 

  22. Richard DJ, Striegel AM (2010) J Chromatogr A 1217:7131–7137

    Article  CAS  Google Scholar 

  23. Gray MJ, Dennis GR, Slonecker PJ, Shalliker RA (2005) J Chromatogr A 1073:3–9

    Article  CAS  Google Scholar 

  24. Higgins RS, Klinger SA (eds) (1990) Solvent guide, 3rd edn. Burdick & Jackson, Muskegon

    Google Scholar 

  25. Striegel AM, Brewer AK (2012) Annu Rev Anal Chem 5:15–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Alan G. Marshall and Dr. Ryan P. Rodgers for helpful advice and discussions. Commercial products are identified to specify adequately the experimental procedure. Such identification does not imply endorsement or recommendation by the National Institute of Standards and Technology, nor does it imply that the materials identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Striegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, S., Striegel, A.M. Size-Exclusion Chromatography of Asphaltenes: An Experimental Comparison of Commonly Used Approaches. Chromatographia 76, 725–733 (2013). https://doi.org/10.1007/s10337-013-2472-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2472-0

Keywords

Navigation