Skip to main content
Log in

Analysis of Biological Samples Using Paper Spray Mass Spectrometry: An Investigation of Impacts by the Substrates, Solvents and Elution Methods

  • Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Paper spray has been developed as a fast sampling ionization method for direct analysis of raw biological and chemical samples using mass spectrometry (MS). Quantitation of therapeutic drugs in blood samples at high accuracy has also been achieved using paper spray MS without traditional sample preparation or chromatographic separation. The paper spray ionization is a process integrated with a fast extraction of the analyte from the raw sample by a solvent, the transport of the extracted analytes on the paper, and a spray ionization at the tip of the paper substrate with a high voltage applied. In this study, the influence on the analytical performance by the solvent–substrate systems and the selection of the elution methods was investigated. The protein hemoglobin could be observed from fresh blood samples on silanized paper or from dried blood spots on silica-coated paper. The on-paper separation of the chemicals during the paper spray was characterized through the analysis of a mixture of the methyl violet 2B and methylene blue. The mode of applying the spray solvent was found to have a significant impact on the separation. The results in this study led to a better understanding of the analyte elution, on-paper separation, as well as the ionization processes of the paper spray. This study also helps in establishing a guideline for optimizing the analytical performance of paper spray for direct analysis of target analytes using mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. de Oliveira AP, de David C, Esteves PA, Spilki FR, da Silva AD, Holz C, Simonetti AB, Roehe PM (2011) Acta Scientiae Veterinariae 39:948–953

    Google Scholar 

  2. Pappaioanou M, Kashamuka M, Behets F, Mbala S, Biyela K, Davachi F, George JR, Green TA, Dondero TJ, Heyward WL, Ryder RW (1993) Aids 7:483–488. doi:10.1097/00002030-199304000-00005

    Article  CAS  Google Scholar 

  3. Toennies G, Kolb JJ (1951) Anal Chem 23:823–826. doi:10.1021/ac60054a002

    Article  CAS  Google Scholar 

  4. Bush IE (1952) Biochem J 50:370–378

    CAS  Google Scholar 

  5. Zaffaroni A, Burton RB, Keutmann EH (1950) Science 111:6–8. doi:10.1126/science.111.2871.6

    Article  CAS  Google Scholar 

  6. Du Toit MH, Eggen PO, Kvittingen L, Partali V, Schmid R (2012) J Chem Educ 89:1295–1296. doi:10.1021/ed200851w

    Article  Google Scholar 

  7. Teixeira LSG, Santos ES, Nunes LS (2012) Anal Chim Acta 722:29–33. doi:10.1016/j.aca.2012.02.014

    Article  CAS  Google Scholar 

  8. Zhou C, Yuan P, Chen B, Yao SZ (2011) Chem J Chin Univ(Chinese) 32:1733–1736

    CAS  Google Scholar 

  9. Berezkin VG, Litvin EF, Balushkin AO, Rozylo JK, Malinowska I (2005) Chem Anal (Warsaw) 50:349–364

    CAS  Google Scholar 

  10. Huang YQ, You JQ, Zhang JS, Sun WJ, Ding L, Feng YQ (2011) J Chromatogr A 1218:7371–7376. doi:10.1016/j.chroma.2011.08.067

    Article  CAS  Google Scholar 

  11. Wallach DFH, Garvin JE (1958) J Am Chem Soc 80:2157–2161. doi:10.1021/ja01542a031

    Article  CAS  Google Scholar 

  12. Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Science 311:1566–1570. doi:10.1126/science.1119426

    Article  CAS  Google Scholar 

  13. Ouyang Z, Zhang XR (2010) Analyst 135:659–660. doi:10.1039/c003812c

    Article  CAS  Google Scholar 

  14. Harris GA, Galhena AS, Fernandez FM (2011) Anal Chem 83:4508–4538. doi:10.1021/ac200918u

    Article  CAS  Google Scholar 

  15. Wang H, Liu JJ, Cooks RG, Ouyang Z (2010) Angewandte Chemie (Int Ed) 49:877–880. doi:10.1002/anie.200906314

    Article  CAS  Google Scholar 

  16. Wang H, Manicke NE, Yang Q, Zheng L, Shi R, Cooks RG, Zheng O (2011) Anal Chem 83:1197–1201. doi:10.1021/ac103150a

    Article  CAS  Google Scholar 

  17. Espy RD, Manicke NE, Ouyang Z, Cooks RG (2012) Analyst 137:2344–2349. doi:10.1039/c2an35082c

    Article  CAS  Google Scholar 

  18. Manicke NE, Abu-Rabie P, Spooner N, Ouyang Z, Cooks RG (2011) J Am Soc Mass Spectrom 22:1501–1507. doi:10.1007/s13361-011-0177-x

    Article  CAS  Google Scholar 

  19. Manicke NE, Yang QA, Wang H, Oradu S, Ouyang Z, Cooks RG (2011) Int J Mass Spectrom 300:123–129. doi:10.1016/j.ijms.2010.06.037

    Article  CAS  Google Scholar 

  20. Yang Q, Manicke NE, Wang H, Petucci C, Cooks RG, Ouyang Z (2012) Anal Bioanal Chem 404:1389–1397. doi:10.1007/s00216-012-6211-4

    Article  CAS  Google Scholar 

  21. Liu JJ, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z (2010) Anal Chem 82:2463–2471. doi:10.1021/ac902854g

    Article  CAS  Google Scholar 

  22. Zhang ZP, Cooks RG, Ouyang Z (2012) Analyst 137:2556–2558. doi:10.1039/c2an35196j

    Article  CAS  Google Scholar 

  23. Zhang ZP, Xu W, Manicke NE, Cooks RG, Ouyang Z (2012) Anal Chem 84:931–938. doi:10.1021/ac202058w

    Article  CAS  Google Scholar 

  24. Ouerdane L, Meija J, Bakirdere S, Yang L, Mester Z (2012) Anal Chem 84:3958–3964. doi:10.1021/ac203137n

    Article  CAS  Google Scholar 

  25. Espy RD, Muliadi AR, Ouyang Z, Cooks RG (2012) Int J Mass Spectrom 325:167–171. doi:10.1016/j.ijms.2012.06.017

    Google Scholar 

  26. Varnell DF (1998) Pulp & Paper-Canada 99:37–39

    Google Scholar 

  27. Wang H, Zhang Z, Manicke NE, Cooks RG, Ouyang Z (2012) Direct, quantitative analysis of nicotine and its metabolites biofluid samples using paper spray mass spectrometry. In: mass spectrometry applications to the clinical lab, San Diego (Track 3: Tobacco, 10:30 am)

  28. Go EP, Uritboonthai W, Apon JV, Trauger SA, Nordstrom A, O’Maille G, Brittain SM, Peters EC, Siuzdak G (2007) J Proteome Res 6:1492–1499. doi:10.1021/pr060608s

    Article  CAS  Google Scholar 

  29. Urbanova D, Adams CW (1970) Histochem J 2:1–9. doi:10.1007/bf01003450

    Article  CAS  Google Scholar 

  30. Barritault D, Expertbezancon A, Guerin MF, Hayes D (1976) Eur J Biochem 63:131–135. doi:10.1111/j.1432-1033.1976.tb10215.x

    Article  CAS  Google Scholar 

  31. Thongboonkerd V, McLeish KR, Arthur JM, Klein JB (2002) Kidney Int 62:1461–1469. doi:10.1046/j.1523-1755.2002.00565.x

    Article  CAS  Google Scholar 

  32. Mandal MK, Chen LC, Hiraoka K (2011) J Am Soc Mass Spectrom 22:1493–1500. doi:10.1007/s13361-011-0162-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (CHE 0847205), National Science Foundation Instrumentation Development for Biological Research (DBI 0852740), National Center for Research Resources (5R21RR031246-03) and the National Institute of General Medical Sciences (8 R21 GM103454) from the National Institutes of Health, and the Alfred Mann Institute at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Ouyang.

Additional information

Published in the topical collection Miniaturized and New Featured Planar Chromatography and Related Techniques with guest editor Paweł K. Zarzycki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Wang, H., Liu, J. et al. Analysis of Biological Samples Using Paper Spray Mass Spectrometry: An Investigation of Impacts by the Substrates, Solvents and Elution Methods. Chromatographia 76, 1339–1346 (2013). https://doi.org/10.1007/s10337-013-2458-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2458-y

Keywords

Navigation