Skip to main content
Log in

The Application of Complex Wavelet Transform to Spectral Signals Background Deduction

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The accuracy of spectrograms may be affected by baseline excursion or drift when infrared spectrometers are used in the analyses of gases. Background deduction or baseline correction is one of the effective pretreatment methods that can improve measurement accuracy. This paper presents a novel methodology based on complex wavelet transform algorithm to perform background deduction. The complex wavelet transform methodology establishes a complex wavelet filter to decompose the spectral signals first, and set the decomposition coefficients in the high-frequency section to zero, and then reconstruct the background signals; finally, the background deduction can be realized by deducting the background signals. In this study, the complex wavelet established by Daubechies was selected to demonstrate background deduction aiming at simulative spectral signals with different backgrounds and the real spectral signal of SF6 decomposition gases. Compared with the results done by the real wavelet transform in the same conditions, the results indicate that complex wavelet transform methodology can perform background deduction more efficiently than real wavelet transform methodology, thus improving the effectiveness and precision of spectrogram measurements greatly, which is useful for SF6 gas decomposition compositions analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Komsta L (2011) Chromatographia 73:721–731

    Article  CAS  Google Scholar 

  2. Shao LM, Lin XH, Shao XG (2002) Appl Spectrosc Rev 37:429–450

    Article  CAS  Google Scholar 

  3. Andrade L, Manolakos ES (2003) J VLSI Signal Process Syst Signal Image, Video Technol 35:229–243

    Article  Google Scholar 

  4. Liu R, Gu XY, Xu KX (2008) Spectrosc Spect Anal 28:1772–1775

    Google Scholar 

  5. Boelens HFM, Dijkstra RJ, Eilers PHC, Fitzpatrick F, Westerhuis JA (2004) J Chromatogr A 1057:21–30

    Article  CAS  Google Scholar 

  6. Kuligowski J, Quintás G, Garrigues S (2010) Talanta 80:1771–1776

    Article  CAS  Google Scholar 

  7. Brauns EB, Meier RJ (2009) Vib Spectrosc 49:303–304

    Article  CAS  Google Scholar 

  8. Qu HB, Ou DL, Cheng YY (2005) J Zhejiang Univ-Sci B 6:838–843

    Article  Google Scholar 

  9. Peng D, Xu KX, Gao J (2009) Chin J Sci Instrum 30:20–24

    Google Scholar 

  10. Kuligowski J, Quintás G, Garrigues S (2009) J Chromatogr A 1216:3122–3130

    Article  CAS  Google Scholar 

  11. Harimoto T, Takeuchi Y, Fujita M (2005) Opt Express 13:5689–5693

    Article  Google Scholar 

  12. Liu Y, Liu K, Tao WL (2010) Spectrosc Spectr Anal 30:1688–1691

    CAS  Google Scholar 

  13. Sun DH, Zhang ZG, Gu S (1998) Spectrosc Spectr Anal 18:194–198

    Google Scholar 

  14. Zhang X, Zhou J, Li N, Wang Y (2012) IET Gener Transm Distrib 6:353–362

    Article  Google Scholar 

  15. Zhou X, Zhou C, Kemp IJ (2005) IEEE Trans Dielectr Electr Insul 12:586–594

    Article  Google Scholar 

  16. Ma X, Zhou C, Kemp IJ (2002) IEEE Trans Dielectr Electr Insul 9:446–457

    Article  Google Scholar 

  17. Driesen J, Belmans R (2002) Circuits Syst 5:681–684

    Google Scholar 

  18. He HB, Chen SJ, Zhang YB, Nguimbis J (2004) IEEE Trans Power Delivery 19:86–91

    Article  Google Scholar 

  19. Tang J, Xu ZR, Sun CX (2009) Eur Trans Electr Power 19:313–322

    Article  Google Scholar 

  20. Hu YG, Shen AG, Li W, Wang XP, Hu JM (2007) Chemometr Intell Lab Syst 85:94–101

    Article  CAS  Google Scholar 

  21. Tan HW, Steven DB (2001) J Chemom 15:647–663

    Article  CAS  Google Scholar 

  22. Singh BN, Tiwari AK (2006) Digit Signal Process: A Rev J 16:275–287

    Article  Google Scholar 

  23. Ge M, Zhang GC, Du R, Xu Y (2002) J Vib Control 8:1023–1032

    Article  Google Scholar 

  24. Choe JM, Woo JH, Kim DG (2006) International symposium on discharges and electrical insulation in vacuum 2:604–607

    Google Scholar 

  25. Kumari RSS, Sadasivam V (2007) IJWMIP 5:399–415

    Google Scholar 

  26. Leung AKM, Chau FT, Gao JB (1998) Chemometr Intell Lab Syst 43:165–184

    Article  CAS  Google Scholar 

  27. Shao XG, Ma CX (2003) Chemometr Intell Lab Syst 69:157–165

    Google Scholar 

  28. Schulze G, Jirasek A, Yu MML, Lim A (2005) Appl Sepctrosc 59:545–574

    Google Scholar 

  29. Chen D, Shao SG, Hu B, Su QD (2004) Anal Chim Acta 511:37–45

    Google Scholar 

  30. Chen D, Chen ZW, Grant E (2011) Anal Bioanal Chem 400:625–634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of P.R. China (Grant No. 60701020) and the Natural Science Foundation of Hubei Province of China (Grant No. 2011CDA099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaogai Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Zhou, J., Tang, J. et al. The Application of Complex Wavelet Transform to Spectral Signals Background Deduction. Chromatographia 76, 687–696 (2013). https://doi.org/10.1007/s10337-013-2456-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2456-0

Keywords

Navigation