Skip to main content
Log in

Hollow-Fiber-Based LPME as a Reliable Sampling Method for Gas-Chromatographic Determination of Pharmacokinetic Parameters of Valproic Acid in Rat Plasma

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A sensitive and simple method based on two-phase liquid-phase microextraction in porous hollow fiber followed by gas chromatography-flame ionization detection was developed for quantification and pharmacokinetic study of valproic acid (VPA, an antiepileptic drug) in rat plasma after oral administration of pure sodium valproate (25 mg kg−1). Some parameters such as type of organic solvent, pH of sample solution, stirring speed, salt addition, extraction time, and volume of sample that affected extraction efficiency of VPA were optimized. Under optimized microextraction conditions, VPA was extracted with 10 μL 1-octanol from 0.5 mL rat plasma previously diluted with 4.5 mL acidified and salinated water (pH 2) using 1-octanoic acid as internal standard. The limit of detection was 17 ng mL−1 with linear response over the concentration range of 50–10,000 ng mL−1 with correlation coefficient higher than 0.998. The developed method was successfully applied to determination of pharmacokinetic parameters such as t max (peak time in concentration–time profile), C max (peak concentration in concentration–time profile), t 1/2 (elimination half-life), AUC0–t (area under the curve for concentration versus time), clearance, and apparent distribution volume in rats following oral administration of VPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Macdonald RL, Kevien-Kelly M (1995) J Epilepsia 36:52–512

    Article  Google Scholar 

  2. Steinborn B, Galas-Zgorzalewicz B (2002) Folia Neuropathol 40:97–100

    CAS  Google Scholar 

  3. Moody JP, Allan SM (1983) Clin Chim Acta 127:263–269

    Article  CAS  Google Scholar 

  4. Van der Horst FAL, Eikelboom GG, Holthuis JJM (1988) J Chromatogr A 456:191–199

    Google Scholar 

  5. Bousquest E, Tirendi S, Santagati NA, Salvo M, Moncada Paterno Castello P (1991) Pharmazie 46:257–258

    Google Scholar 

  6. Kushida K, Ishizaki T (1985) J Chromatogr B 338:131–139

    Article  CAS  Google Scholar 

  7. Loffe V, Kalendarev T, Rubinstein I, Zupkovitz G (2002) J Pharm Biomed Anal 30:391–403

    Article  Google Scholar 

  8. Ramakrishna NVS, Vishwottam KN, Manoj S, Koteshwara M, Santosh M, Chidambara J, Kumar BR (2005) Rapid Commun Mass Spectrom 19:1970–1978

    Article  CAS  Google Scholar 

  9. Anari MR, Burton RW, Gopaul S, Abbott FS (2000) J Chromatogr B 742:217–227

    Article  CAS  Google Scholar 

  10. Hussein Z, Patterson K, Lamm J, Cavanaugh J, Granneman G (1993) Biopharm Drug Dispos 14:389–399

    Article  CAS  Google Scholar 

  11. Muro H, Tatsuhara T, Sugimoto T, Woo M, Nishida N, Murakami K, Yamaguchi Y (1995) J Chromatogr B 663:83–89

    Article  CAS  Google Scholar 

  12. Fisher E, Wittfoht W, Nau H (1992) Biomed Chromatogr 6:24–29

    Article  CAS  Google Scholar 

  13. Rompotis S, Parissi-Poulou M, Gikas E, Kazanis M, Vavayannis A (2002) Panderi. J Liq Chromatogr Relat Technol 25:2833–2847

    Article  CAS  Google Scholar 

  14. Katsu T, Ido K, Moriya A, Nakae Y, Sakata I (2000) Electroanalysis 12:1282–1285

    Article  CAS  Google Scholar 

  15. Speed DJ, Dickson SJ, Cairns ER, Kim ND (2001) J Anal Toxicol 25:198–202

    Article  CAS  Google Scholar 

  16. Gaetani E, Laureri CF, Vitto M (1992) J Pharm Biomed Anal 10:193–197

    Article  CAS  Google Scholar 

  17. Pedersen-Bjergaard S, Rasmussen KE (1999) Anal Chem 71:2650–2656

    Article  CAS  Google Scholar 

  18. Rasmussen KE, Pedersen-Bjergaard S, Krogh M, Ugland HG, Grønhaug T (2000) J Chromatogr A 873:3–11

    Article  CAS  Google Scholar 

  19. Almousa AA, Ikeda R, Wada M, Kuroda N, Hanajiri RK, Nakashima K (2011) J Chromatogr B 879:2941–2944

    Article  CAS  Google Scholar 

  20. Rasmussen KE, Pedersen-Bjergaard S (2004) Trends Anal Chem 23:1–10

    Article  CAS  Google Scholar 

  21. Krogh M, Johansen K, Tonnesen F, Rasmussen KE (1995) J Chromatogr B 673:299–305

    Article  CAS  Google Scholar 

  22. Shahdousti P, Mohammadi A, Alizadeh N (2007) J Chromatogr B 850:128–133

    Article  CAS  Google Scholar 

  23. Farajzadeh MA, Farhadi K, Matin AA, Hashemi P, Jouyban A (2009) Anal Sci 25:875–879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Farhadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahangiri, S., Hatami, M., Farhadi, K. et al. Hollow-Fiber-Based LPME as a Reliable Sampling Method for Gas-Chromatographic Determination of Pharmacokinetic Parameters of Valproic Acid in Rat Plasma. Chromatographia 76, 663–669 (2013). https://doi.org/10.1007/s10337-013-2432-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2432-8

Keywords

Navigation