Skip to main content

Advertisement

Log in

Factorial-Based Designs in Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this paper, the review on application of factorial-based designs in liquid chromatography (LC) is given. The most useful and applicable full factorial design and reduced forms of full factorial design (fractional factorial design and Plackett–Burman design) applied in LC are presented. Literature survey shows that experimental design presents very often used tool in screening, optimization and robustness testing of LC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong NA (2006) Pharmaceutical experimental design and interpretation. Taylor & Francis Group, USA

    Book  Google Scholar 

  2. Araujo PW, Brereton RG (1996) Experimental design. I Screening. Trends Anal Chem 15:26–31

    CAS  Google Scholar 

  3. Ferreira SLC, Bruns RE, Silva EGP, Santos WNL, Quintella CM, David JM, Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB (2007) Statistical design and response surface technique for the optimization of chromatographic systems. J Chromatogr A 1158:2–14

    Article  CAS  Google Scholar 

  4. Dejaegher B, Vander Heyden Y (2011) Experimental design and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal 56:141–158

    Article  CAS  Google Scholar 

  5. Leardi R (2007) Experimental design in chemistry: a tutorial. Anal Chim Acta 652:161–172

    Article  Google Scholar 

  6. Hibbert DB (2012) Experimental design in chromatography: A tutorial review. J Chromatogr B (in press)

  7. Deming SN, Morgan SL (1996) Experimental design: a chemometric approach. Elsevier, The Netherlands

    Google Scholar 

  8. Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström A, Pettersen J, Bergman R (1998) Experimental design and optimization. Chemom Intell Lab Syst 42:3–40

    Article  CAS  Google Scholar 

  9. ICH Harmonised Tripartite Guideline, International Conference on Harmonisation of Technical Requirements for the Registration of Pharmaceuticals for Human Use (ICH) (2005) Validation of analytical procedures: text and methodology Q2(R1). http://www.ich.org/LOB/media/MEDIA417.pdf

  10. Ryan TP (2007) Modern experimental design. Wiley, New Jersey

    Book  Google Scholar 

  11. Brereton RG (2003) Chemometrics–data analysis for the laboratory and chemical Plant. Wiley, The Atrium

    Google Scholar 

  12. Barmpalexis P, Kanaze FI, Georgarakis E (2009) Developing and optimizing a validated isocratic reversed-phase high-performance liquid chromatography separation of nimodipine and impurities in tablets using experimental design methodology. J Pharm Biomed Anal 49:1192–1202

    Article  CAS  Google Scholar 

  13. Andrade-Eiroa A, Dievart P, Dagaut P (2010) Improved optimization of polycyclic aromatic hydrocarbons (PAHs) mixtures resolution in reverse-phase high-performance liquid chromatography by using factorial design and response surface methodology. Talanta 81:265–274

    Article  CAS  Google Scholar 

  14. Medenica M, Jančić B, Ivanović D, Malenović A (2004) Experimental design in reversed–phase high–performance liquid chromatographic analysis of imatinib mesylate and its impurity. J Chromatogr A 1031:243–248

    Article  CAS  Google Scholar 

  15. Petkovska R, Cornett C, Dimitrovska A (2008) Chemometrical approach in lansoprazole and its related compounds analysis by rapid resolution RP-HPLC method. J Liq Chromatogr Rel Technol 31:2159–2173

    Article  CAS  Google Scholar 

  16. Hadjmohammadi MR, Saman S, Nazari SJ (2010) Separation optimization of quercetin, hesperetin and chrysin in honey by micellar liquid chromatography and experimental design. J Sep Sci 33:3144–3151

    Article  CAS  Google Scholar 

  17. Delbrus B, Lebrun P, Mbinze Kindenge J, Lecomte F, Ceccato A, Caliaro G, Mavar Tayey Mbay J, Boulanger B, Marini RD, Rozet E, Hubert Ph (2011) Innovative high-performance liquid chromatography method development for the screening of 19 antimalarial drugs based on a generic approach, using design of experiments, independent component analysis and design space. J Chromatogr A 1218:5205–5215

    Article  Google Scholar 

  18. Duarte RMBO, Duarte AC (2010) A new chromatographic response function for use in size-exclusion chromatography optimization strategies: application to complex organic mixtures. J Chromatogr A 1217:7556–7563

    Article  CAS  Google Scholar 

  19. Malenović A, Ivanović D, Medenica M, Jančić B, Marković S (2004) Retention modelling in liquid chromatographic separation of simvastatin and its six impurities applying microemulsion as eluent. J Sep Sci 27(13):1087–1092

    Article  Google Scholar 

  20. Jančić B, Ivanović D, Medenica M, Malenović A, Marković S (2005) Microemulsion liquid chromatographic method for characterisation of fosinopril sodium and fosinoprilat separation with chemometrical support. Anal Bional Chem 383(4):687–694

    Article  Google Scholar 

  21. De Aragão NM, Veloso MCC, Bispo MS, Ferreira SLC, De Andrade JB (2005) Multivariate optimization of the experimental conditions for determination of three methylxanthines by reversed-phase high-performance liquid chromatography. Talanta 67:1007–1013

    Article  Google Scholar 

  22. Dincel A, Basci NE (2007) An experimental design approach to selecting the optimum LC conditions for the determination of local anaesthetics. Chromatographia 66:S81–S85

    Article  CAS  Google Scholar 

  23. Nemutlu E, Kir S, Katlan D, Beksaç MS (2009) Simultaneous multiresponse optimization of an HPLC method to separate seven cephalosporins in plasma and amniotic fluid: application to validation and quantification of cefepime, cefixime and cefoperazone. Talanta 80:117–126

    Article  CAS  Google Scholar 

  24. Rafamantanana MH, Debrus B, Raoelison GE, Rozet E, Lebrun P, Uverg-Ratsimamanga S, Hubert P, Quetin-Leclerq J (2012) Application of design of experiments and design space methodology for the HPLC-UV separation optimization of aporphine alkaloids from leaves of Spirospermum penduliflorum Thouras. J Pharm Biomed Anal 62:23–32

    Article  CAS  Google Scholar 

  25. Al-Hamdi AMH, Williams JR, Al-Kindy SMZ, Pillay AE (2006) Optimization of high-performance liquid chromatography method to quantify bilirubin and separate it from its photoproducts. App Biochem Biotechnol 135:209–218

    Article  CAS  Google Scholar 

  26. Jančić-Stojanović B, Ivanović D, Malenović A, Medenica M (2009) Artificial neural networks in analysis of indinavir and its degradation products retention. Talanta 78:107–112

    Article  Google Scholar 

  27. Jančić-Stojanović B, Popović I, Malenović A, Ivanović D, Medenica M (2010) Factorial design in optimization of chromatographic separation of ramipril and its impurities. Chromatographia 71:799–804

    Article  Google Scholar 

  28. Popović I, Ivanović D, Medenica M, Malenović A, Jančić B (2008) LC determination of lercanidipine and its impurities using DryLab® software and experimental design procedures. Chromatographia 67:449–454

    Article  Google Scholar 

  29. Petkovska R, Cornett C, Dimitrovska A (2008) Development and validation of rapid resolution RP-HPLC method for simultaneous determination of atorvastatin and related compounds by use of chemometrics. Anal Lett 41:992–1009

    Article  CAS  Google Scholar 

  30. Ragonese R, Mulholland M, Kalman J (2000) Full and fractionated experimental design for robustness testing in the high-performance liquid chromatographic analysis of codeine phosphate, pseudoephedrine hydrochloride and chlorpheniramine maleate in pharmaceutical preparation. J Chromatogr A 870:45–51

    Article  CAS  Google Scholar 

  31. Orwa JA, Van Gerven A, Roets E, Hoogmartens J (2000) Development and validation of a liquid chromatography method for analysis of colistin sulphate. Chromatographia 51:433–436

    Article  CAS  Google Scholar 

  32. Chepkwony HK, Vermaelen A, Roets E, Hoogmartens J (2001) Development and validation of an reversed-phase liquid chromatographic method for analysis of spiramycin and related substances. Chromatographia 54:51–56

    Article  CAS  Google Scholar 

  33. Chepkwony HK, Roets E, Hoogmartens J (2001) Liquid chromatography of troleandomycin. J Chromatogr A 914:53–58

    Article  CAS  Google Scholar 

  34. Orwa JA, Govaerts C, Roets E, Van Schepdael A, Hoogmartens J (2001) Liquid chromatography of gramicidin. Chromatographia 53:17–21

    Article  CAS  Google Scholar 

  35. Kamau FN, Chepkwony HK, Ngugi JK, Debremaeker D, Roets E, Hoogmartens J (2002) Isocratic liquid chromatographic method for the analysis of azithromycin and its structurally related substances in bulk samples. J Chromatogr Sci 40:529–533

    Article  CAS  Google Scholar 

  36. Savić G, Zečević M, Jocić B, Živanović L (2007) Validation of an HPLC method for the determination of valdecoxib and its degradation product: a mixture of α- and β-n-lactosyl sulfonamide anomers. Chromatographia 66:29–35

    Article  Google Scholar 

  37. Daidone F, Heuvelmans R, Aerden L, Hoogmartens J, Adams E (2008) Development of a liquid chromatography method for the analysis of josamycin. J Pharm Biomed Anal 48:347–355

    Article  CAS  Google Scholar 

  38. Srinubabu G, Ratnam BVV, Rao AA, Rao MN (2008) Development and validation of LC-MS/MS method for the quantification of oxcarbazepine in human plasma using an experimental design. Chem Pharm Bull 56:28–33

    Article  CAS  Google Scholar 

  39. DeBorba BM, Rohrer JS, Bhattacharyya L (2004) Development and validation of an assay for citric acid/citrate and phosphate in pharmaceutical dosage forms using ion chromatography with suppressed conductivity detection. J Pharm Biomed Anal 36:517–524

    Article  CAS  Google Scholar 

  40. Iriate G, Ferreiros N, Ibarrondo I, Alonso RM, Maguregi MI, Gonzales L, Jimènez RM (2006) Optimization via experimental design of an SPE-HPLC-UV-fluorescence method for the determination of valsartan and its metabolite in human plasma samples. J Sep Sci 29:2265–2283

    Article  Google Scholar 

  41. Sivakumar T, Manavalan R, Muralidharan C, Valliappan K (2007) An improved HPLC method with the aid of a chemometric protocol: simultaneous analysis of amlodipine and atorvastatin in pharmaceutical formulations. J Sep Sci 30:3143–3153

    Article  CAS  Google Scholar 

  42. Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL (2008) Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC. Anal Biochem 383:93–102

    Article  CAS  Google Scholar 

  43. Bonfilio R, Tarley CRT, Pereira GR, Salgado HRN, De Araújo MB (2009) Multivariate optimization and validation of an analytical methodology by RP-HPLC for the determination of losartan potassium in capsules. Talanta 80:236–241

    Article  CAS  Google Scholar 

  44. Džodić P, Živanović L, Protić A, Zečević M, Jocić B (2009) Chemometrically assisted development and validation of LC for simultaneous determination of carbamazepine and its impurities iminostilbene and iminodibenzyl in solid dosage form. Chromatographia 70:1343–1351

    Article  Google Scholar 

  45. Živanović L, Protić A, Zečević M, Jocić B, Kostić M (2009) Multicriteria optimization methodology in development of HPLC separation of mycophenolic acid and mycophenolic acid glucuronide in human urine plasma. J Pharm Biomed Anal 50:640–648

    Article  Google Scholar 

  46. Marengo E, Gennaro MC, Gianotti V (2000) Chemometrically assisted simultaneous separation of 21 aromatic sulfonates in ion-interaction RP-HPLC. Chem Intell Lab System 53:57–67

    Article  CAS  Google Scholar 

  47. Malešević M, Živanović L, Protić A, Jović Ž (2011) Multiobjective optimization approach in evaluation of chromatographic behaviour of zolpidem tartrate and its degradation products. Chromatographia 74:197–208

    Article  Google Scholar 

  48. Rahmania A, Selamata J, Soleimanya F (2011) Optimization and validation of a HPLC method for simultaneous determination of aflatoxin B1, B2, G1, G2, ochratoxin and zearalenone using experimental design. Food Additiv Contam 28:902–912

    Article  Google Scholar 

  49. Dorthe AM, Ramberti JL, Thienpont A (2000) Experimental design optimization of chromatographic separation for polycyclic hydrocarbons in vegetable oils. Analusis 28:587–591

    Article  CAS  Google Scholar 

  50. Aşçi B, Dönmez OA, Bozdoğan A, Sungur S (2010) Experimental design of reversed-phase high performance liquid chromatographic conditions for simultaneous determination of ibuprofen, pseudoephedrine hydrochloride, chlorpheniramine maleate and nipagen. J Anal Chem 65:743–748

    Article  Google Scholar 

  51. Baranda AB, Etxebarria N, Jiménez RM, Alonso RM (2005) Improvement of the chromatographic separation of several 1,4-dihydropyridines calcium channel antagonist drugs by experimental design. J Chromatogr Sci 43:505–512

    Article  CAS  Google Scholar 

  52. Nguyen AT, Aerts T, Van Dam D, De Deyn PP (2010) Biogenic amines and their metabolites in mouse brain tissue: development, optimization and validation of an analytical HPLC method. J Chromatogr B 878:3003–3014

    Article  CAS  Google Scholar 

  53. Portet FI, Treiner C, Desbéne PL (2000) Simultaneous quantitative trace analysis of anionic and nonionic surfactant mixtures by reversed-phase liquid chromatography. J Chromatogr A 878:99–113

    Article  CAS  Google Scholar 

  54. Jansen MA, Kiwata J, Arceo J, Faull KF, Hanrahan G, Porter E (2010) Evolving neural networks optimization of cholesteryl ester separation by reversed-phase HPLC. Anal Bioanal Chem 397:2367–2374

    Article  CAS  Google Scholar 

  55. Novotnà K, Havliš J, Havel J (2005) Optimization of high performance liquid chromatography separation of neuroprotective peptides. Fractional experimental design combined with artificial neural networks. J Chromatogr A 1096:50–57

    Article  Google Scholar 

  56. Hund E, Vander Heyden Y, Haustein M, Massart DL, Smeyers-Verbeke J (2000) Robustness testing of a reversed-phase high-performance liquid chromatographic assay: comparison of fractional and asymmetrical factorial design. J Chromatogr A 874:167–185

    Article  CAS  Google Scholar 

  57. Li YG, Liu H, Vander Heyden Y, Chen M, Wang ZT, Hu ZB (2005) Robustness tests on the United States Pharmacopeia XXVI HPLC assay for ginsenosides in Asian and American ginseng using an experimental design. Anal Chim Acta 536:29–38

    Article  CAS  Google Scholar 

  58. Yekkala RS, Vandenwayenberg S, Hoogmartens J, Adams E (2006) Evaluation of an International Pharmacopeia method for the analysis of nelfinavir mesylate by liquid chromatography. J Chromatogr A 1134:56–65

    Article  CAS  Google Scholar 

  59. Piñeiro Z, Cantos-Villar E, Palma M, Puertas B (2011) Direct liquid chromatography method for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines. J Agricul Food Chem 56:11683–11689

    Article  Google Scholar 

  60. Marengoa E, Gennaroa MC, Gianottia V, Angelinoa S (2001) A test of robustness in IIR-RP-HPLC separation of nine priority pollutant phenols. J Liq Chromatogr Rel Technol 24:341–353

    Article  Google Scholar 

  61. Li W, Rasmussen HT (2003) Strategy for developing and optimizing liquid chromatography methods in pharmaceutical development using computer-assisted screening and Plackett–Burman experimental design. J Chromatogr A 1016:165–180

    Article  CAS  Google Scholar 

  62. Guebila RB, Hellal F (2009) Optimization of the LC separation of 15 phenolic compounds with Plackett–Burman design. Chromatographia 69:195–198

    Article  Google Scholar 

  63. Sun SW, Su HT (2002) Validated HPLC method for determination of sennosides A and B in senna tablets. J Pharm Biomed Anal 29:881–894

    Article  Google Scholar 

  64. Nguyet ANM, Tallieu L, Plizier-Vercammen JP, Massart DL, Vander Heyden Y (2003) Validation of an HPLC method on short columns to assay ketoconazole and formaldehyde in shampoo. J Pharm Biomed Anal 32:1–19

    Article  Google Scholar 

  65. Marini RD, Boulanger B, Vander Heyden Y, Chiap P, Crommen J, Hubert Ph (2005) Uncertainty assessment from robustness testing applied on an LC assay for R-timolol and other related substances in S-timolol maleate. Anal Chim Acta 531:131–140

    Article  CAS  Google Scholar 

  66. Waters RB, Dovletoglou A (2003) Evaluating HPLC assay robustness with experimental design. J Liq Chromatogr Rel Technol 26:2975–2985

    Article  CAS  Google Scholar 

  67. Hou JJ, Wu WY, Da J, Yao S, Long HL, Yang Z, Cai LY, Yang M, Liu X, Jiang BH, Guo DA (2011) Ruggedness and robustness of conversion factors in method of simultaneous determination of multi-components with single reference standard. J Chromatogr A 1218:5618–5627

    Article  CAS  Google Scholar 

  68. Halabi A, Ferrayoli C, Palacio M, Dabbene V, Palacios S (2004) Validation of a chiral HPLC assay for (R)-salbutamol sulfate. J Pharm Biomed Anal 34:45–51

    Article  CAS  Google Scholar 

  69. Malenović A, Jančić-Stojanović B, Vemić A, Ivanović D, Medenica M (2010) Validation of column liquid chromatographic method for the analysis of pramipexole and its five impurities. J AOAC 93:1102–1112

    Google Scholar 

  70. Rakić T, Malenović A, Jančić-Stojanović B, Ivanović D, Medenica M (2012) Avoiding the false negative results in LC method robustness testing by modifications of the algorithm of Dong and dummy factor effects approach. Chromatographia 75:397–401

    Article  Google Scholar 

  71. Mašković M, Jančić-Stojanović B, Malenović A, Ivanović D, Medenica M (2010) Assessment of liquid chromatographic method robustness by use of Plackett–Burman design. Acta Chromatogr 22:281–296

    Article  Google Scholar 

  72. Mašković M, Dotsikas Y, Malenović A, Jančić-Stojanović B, Ivanović D, Medenica M (2011) Validation of an oil-in-water microemulsion liquid chromatography method for analysis of perindopril tert-butylamine and its impurities. J AOAC 94:723–734

    Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Education and Science of the Republic of Serbia for supporting these investigations through the Project 172052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Jančić Stojanović.

Additional information

Published in the topical collection Chemometrics in Chromatography with guest editors B. Jančić Stojanović and Y. Dotsikas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jančić Stojanović, B. Factorial-Based Designs in Liquid Chromatography. Chromatographia 76, 227–240 (2013). https://doi.org/10.1007/s10337-012-2350-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2350-1

Keywords

Navigation