Skip to main content
Log in

Liquid Chromatographic Determination of 1,3,5-Trinitroperhydro-1,3,5-triazine and 2,4,6-Trinitrotoluene in Human Plasma and Groundwater Samples Utilizing Microextraction in Packed Syringe

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A rapid and efficient analytical method suitable for the simultaneous determination of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in groundwater and human plasma samples using liquid chromatography with UV detection (LC-UV) has been developed. RDX and TNT were baseline separated within time span of 4.8 min on a reverse phase C18 analytical column with water acetonitrile mixture in ratio 30:70 (v/v) as mobile phase. The UV detection was carried out at 234 nm. A sample preparation method for biological and environmental matrices using microextraction by packed sorbent (MEPS) technique has been implemented, employing 4 mg of C18 silica sorbent inserted into a microvolume syringe and using only 30 μL of plasma and groundwater samples. Several factors affecting the performance of MEPS, such as number of extraction cycles, washing solvent volume, elution solvent volume and carryover etc., were optimized. Limits of detection were 0.0997 and 0.0628 ng mL−1 for RDX and TNT, respectively. The extraction yields were satisfactory for both analytes (>81.2 %) as well as the precision data, which were always in the low percentage of relative standard deviation values (<5.6 % , n = 6). The present method is miniaturized, fully automated, and robust which can be easily used for forensic studies of explosives in environmental and biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yinon J, Zitrin S (1993) Modern methods and applications in analysis of explosives. Wiley, New York

    Google Scholar 

  2. Narayanan TV (1996) Modern technologies of bomb detection and disposal. RA Security System, New Delhi

    Google Scholar 

  3. Yinon J (1999) Toxicity and metabolism of explosives. CRC Press, Boca Raton

    Google Scholar 

  4. Holmgren E, Carlsson H, Goede P, Crescenzi C (2005) J Chromatogr A 1099:127–135

    Article  CAS  Google Scholar 

  5. Hewitt AD, Jenkins TF, Walsh ME, Walsh MR, Taylor S (2005) Chemosphere 61:888–894

    Article  CAS  Google Scholar 

  6. Marple RL, LaCourse WR, Marple RL, LaCourse WR (2005) Anal Chem 77:6709–6714

    Article  CAS  Google Scholar 

  7. Marple RL, LaCourse WR (2005) Talanta 66:581–590

    Article  CAS  Google Scholar 

  8. Sanchez C, Carlsson H, Colmsjo A, Crescenzi C, Batlle R (2003) Anal Chem 75:4639–4645

    Article  CAS  Google Scholar 

  9. Harvey SD, Clauss TRW (1996) J Chromatogr A 753:81–89

    Article  CAS  Google Scholar 

  10. Feltes J, Levsen K (1989) J High Resolut Chromatogr 12:613–619

    Article  CAS  Google Scholar 

  11. Pan X, Zhang B, Cox SB, Anderson TA, Cobb GP (2006) J Chromatogr A 1107:2–8

    Article  CAS  Google Scholar 

  12. Pan X, Tian K, Jones LE, Cobb GP (2006) Talanta 70:455–459

    Article  CAS  Google Scholar 

  13. MacCrehan WA, Bedner M (2006) Forensic Sci Int 163:119–124

    Article  CAS  Google Scholar 

  14. Shin KH, Lim Y, Ahn JH, Khil J, Cha CJ, Hur HG (2005) Chemosphere 61:30–39

    Article  CAS  Google Scholar 

  15. Dutta SK, Hollowella GP, Hashemb FM, Kuykendallc LD (2003) Soil Biol Biochem 35:667–675

    Article  CAS  Google Scholar 

  16. Bausinger T, Dehner U, Preuss J (2004) Chemosphere 57:821–829

    Article  CAS  Google Scholar 

  17. Paull B, Roux C, Dawson M, Doble P (2004) J Forensic Sci 49:1181–1186

    Article  CAS  Google Scholar 

  18. Halasz A, Groom C, Zhou E, Paquet L, Beaulieu C, Deschamps S, Corriveau A, Thiboutot S, Ampleman G, Dubois C, Hawari J (2002) J Chromatogr A 963:411–418

    Article  CAS  Google Scholar 

  19. Batlle R, Carlsson H, Holmgren E, Colmsjo A, Crescenzi C (2002) J Chromatogr A 963:73–82

    Article  CAS  Google Scholar 

  20. Astratov M, Preiss A, Levsen K, Wiinsch G (1997) Int J Mass Spectrom Ion Processes 167/168:481–502

    Google Scholar 

  21. Levsen K, Mussmann P, Berger-Preiss E, Preiss A, Volmer D, Wuensch G (1993) Acta Hydrochim Hydrobiol 21:153–166

    Article  CAS  Google Scholar 

  22. Furton KG, Wu LM, Almirall JR (2000) J Forensic Sci 45:857–864

    CAS  Google Scholar 

  23. Monteil-Rivera F, Beaulieu C, Deschamps S, Paquet L, Hawari J (2004) J Chromatogr A 1048:213–221

    CAS  Google Scholar 

  24. Wu L, Almirall JR, Furton KG (1999) J High Resol Chromatogr 22:279–282

    Article  CAS  Google Scholar 

  25. Wynne P, Hibbert R, DiFeo D, Dawes P (2008) Column 4:12–17

    Google Scholar 

  26. El-Beqqali A, Abdel-Rehim M (2007) J Sep Sci 30:2501–2505

    Article  CAS  Google Scholar 

  27. Moeder M, Schrader S, Winkler U, Rodil R (2010) J Chromatogr A 1217:2925–2932

    Article  CAS  Google Scholar 

  28. Said R, Hassan Z, Hassan M, Abdel-Rehim M (2008) J Liq Chromatogr Rel Technol 31:683–694

    Article  CAS  Google Scholar 

  29. Prieto A, Vallejo A, Zuloaga O, Paschke A, Sellergen B, Schillinger E, Schrader S, Möder M (2011) Anal Chim Acta 703:41–51

    Article  CAS  Google Scholar 

  30. Abdel-Rehim M, Hassan Z, Skansem P, Hassan M (2007) J Liq Chromatogr Rel Technol 30:3029–3041

    Article  CAS  Google Scholar 

  31. Prieto A, Schrader S, Bauer C, Moder M (2011) Anal Chim Acta 685:146–152

    Article  CAS  Google Scholar 

  32. Vita M, Skansen P, Hassan M, Abdel-Rehim M (2005) J Chromatogr B 817:303–307

    Article  CAS  Google Scholar 

  33. Vlckova H, Solichova D, Blaha M, Solich P, Novakova L (2011) J Pharm Biomed Anal 55:301–308

    Article  CAS  Google Scholar 

  34. Vlckova H, Rabatinova M, Miksova A, Kolouchova G, Micuda S, Solich P, Novakova L (2012) Talanta 90:22–29

    Article  CAS  Google Scholar 

  35. Jonsson S, Hagberg J, Van Bavel B (2008) J Agric Food Chem 56:4962–4967

    Article  CAS  Google Scholar 

  36. Moreno IED, da Fonseca BM, Barroso M, Costa S, Queiroz JA, Gallardo E (2012) J Pharm Biomed Anal 61:93–99

    Article  CAS  Google Scholar 

  37. Miyaguchi H, Iwata YT, Kanamori T, Tsujikawa K, Kuwayama K, Inoue H (2009) J Chromatogr A 1216:4063–4070

    Article  CAS  Google Scholar 

  38. 2002/657/EC Implementing Council Directive 96/23/EC. http://www.eur-lex.europa.eu

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research, New Delhi for providing the Senior Research Fellowship No. 09/140 (0147)/2009-EMR-I to one of author Gaurav and DST-DAAD (DST/INT/DAAD/P-180/2008) for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, P., Gaurav, Nidhi et al. Liquid Chromatographic Determination of 1,3,5-Trinitroperhydro-1,3,5-triazine and 2,4,6-Trinitrotoluene in Human Plasma and Groundwater Samples Utilizing Microextraction in Packed Syringe. Chromatographia 75, 739–745 (2012). https://doi.org/10.1007/s10337-012-2262-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2262-0

Keywords

Navigation