Skip to main content
Log in

Evaluating the Holdup Time of Gas-Chromatographic Systems in Various Temperature Regimes by Using Recurrent Relations

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The new algorithm for evaluating the holdup time of gas-chromatographic systems (t 0) is considered. It is applicable at any temperature regimes of analysis not only isothermal, but also with linear temperature programming. It is based on the extrapolation of retention times of consecutive homologues (in particular, n-alkanes) with the evaluation of retention time of hypothetical homologue with zero number of carbon atoms in the molecule by using linear recurrent relations. It is shown that historically first method for evaluating t 0 using retention times (t R) of three consecutive homologues, proposed by Peterson and Hirsch (J Lipid Res 1:132–144, 1959), can be expanded onto temperature programming regimes after its modification by replacing t R values by their squares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blumberg LM (2010) Temperature-programmed gas chromatography. Wiley, Weinheim

    Book  Google Scholar 

  2. Scott RPW (2010) Dead point: volume or time, In: Cazes J (ed) Encyclopedia of chromatography, vol 1, 3rd edn. Taylor & Francis, Boca Raton, pp 557–558

  3. Ettre LS (1980) Chromatographia 13(2):73–84

    Article  CAS  Google Scholar 

  4. Jinno K (2010) Void volume in LC, In: Cazes J (ed) Encyclopedia of chromatography, vol 3, 3rd edn. Taylor & Francis, Boca Raton, pp 2430–2431

  5. Alhedai A, Martire DE, Scott RPW (1989) Analyst 114(8):869–875

    Article  CAS  Google Scholar 

  6. Parcher JF, Jonhson DH (1980) J Chromatogr Sci 18(6):267–272

    CAS  Google Scholar 

  7. Vezzani S, Castello G, Pierani D (1998) J Chromatogr A 811:85–96

    Article  CAS  Google Scholar 

  8. Binder RB, Haddon WF (1984) Carbohydr Res 129:21–32

    Article  CAS  Google Scholar 

  9. Oumada FZ, Roses M, Bosch E (2000) Talanta 53:667–677

    Article  CAS  Google Scholar 

  10. Peterson ML, Hirsch J (1959) J Lipid Res 1:132–134

    CAS  Google Scholar 

  11. Harvey J, Gold US (1962) Anal Chem 34(1):174–175

    Article  Google Scholar 

  12. Riedmann M (1974) Chromatographia 7(2):59–62

    Article  Google Scholar 

  13. Lomsugarit S, Jeyashoke N, Krisnangkura K (2001) J Chromatogr A 926:337–340

    Article  CAS  Google Scholar 

  14. Guardino X, Albaiges J, Firpo G, Rodriquez-Vinals R, Gassiot M (1976) J Chromatogr 118:13–22

    Article  CAS  Google Scholar 

  15. Grobler A, Balizs G (1974) J Chromatogr Sci 12:57–58

    CAS  Google Scholar 

  16. Toth A, Zala E (1984) J Chromatogr 284:53–62

    Article  CAS  Google Scholar 

  17. Toth A, Zala E (1984) J Chromatogr 298:381–387

    Article  CAS  Google Scholar 

  18. Smith RJ, Haken JK, Wainwright MS (1985) J Chromatogr 331:389–395

    Article  CAS  Google Scholar 

  19. Ballschmiter K, Heeg FJ, Meu HJ, Zinburg R (1985) Fresenius J Anal Chem 321:426–435

    Article  CAS  Google Scholar 

  20. Touabet A, Maeck M, Badjah Hadi Ahmed AY, Meklati BY (1986) Chromatographia 22(7):245–248

    Article  Google Scholar 

  21. Touabet A, Badjah Hadi Ahmed AY, Maeck M, Meklati BY (1986) J High Resolut Chromatogr Chromatogr Commun 8(9):456–460

    Article  Google Scholar 

  22. Wronski B, Szczepaniak LM, Witkiewicz Z (1986) J Chromatogr 364:53–61

    Article  CAS  Google Scholar 

  23. Vigdergauz MS, Petrova EI (1987) Russ J Anal Chem 42(8):1476–1481

    CAS  Google Scholar 

  24. Maeck M, Touabet A, Badjah Hadi Ahmed AY, Meklati BY (1989) Chromatographia 29(5/6):205–208

    Article  Google Scholar 

  25. Quintanilla-Lopez JE, Lebron-Aguilar R, Garcia-Dominguez JA (1997) J Chromatogr A 767:127–136

    Article  CAS  Google Scholar 

  26. Lebron-Aguilar R, Quintanilla-Lopez JE, Garcia-Dominguez JA (1997) J Chromatogr A 760:219–227

    Article  CAS  Google Scholar 

  27. Garcia-Dominguez JA, Quintanilla-Lopez JE, Lebron-Aguilar R (1998) J Chromatogr A 803:197–202

    Article  Google Scholar 

  28. Aryusuk K, Krisnangkura K (2003) J Sep Sci 26:1688–1692

    Article  CAS  Google Scholar 

  29. Pous-Torres S, Torres-Lapasity JR, Garsia-Alvarez-Cogue MC (2009) J Liq Chromatogr Relat Technol 32:1065–1083

    Article  CAS  Google Scholar 

  30. Wainwright MS, Haken JK (1980) J Chromatogr 184:1–20

    Article  CAS  Google Scholar 

  31. Kaiser RE, Rackstraw AJ (1983) Computer chromatography, vol 1. A. Huethig Verlag, Heidelberg

    Google Scholar 

  32. Smith RJ, Haken JK, Wainwright MS (1985) J Chromatogr 334:95–127

    Article  CAS  Google Scholar 

  33. Smith RJ, Haken JK, Wainwright MS, Madden BG (1985) J Chromatogr 328:11–34

    Article  CAS  Google Scholar 

  34. Kaiser RE, Bertsch W (1998) J High Resolut Chromatogr Chromatogr Commun 1:115–120

    Article  Google Scholar 

  35. Dominguez JAG, Diez-Masa JC, Davankov VA (2001) Pure Appl Chem 73(6):969–992

    Article  CAS  Google Scholar 

  36. Wu NS, Wu GS, Wu MY (2006) J Chromatogr Sci 44(5/6):244–246

    CAS  Google Scholar 

  37. Curvers J, Rijks J, Cramers C, Knauss K, Larson P (1985) J High Resolut Chromatogr Chromatogr Commun 8:611–617

    Article  CAS  Google Scholar 

  38. Golovnya RV, Svetlova NY (1988) Russ J Anal Chem 43(5):859–865

    CAS  Google Scholar 

  39. Golovnya RV, Svetlova NY (1988) Chromatographia 25(6):493–496

    Article  CAS  Google Scholar 

  40. Zenkevich IG, Szczepaniak LM (1992) Russ J Anal Chem 47(3):507–513

    CAS  Google Scholar 

  41. Klemp MA, Sacks RD (1991) J Chromatogr Sci 29(12):507–510

    CAS  Google Scholar 

  42. Zenkevich IG (2006) Russ J Org Chem 42(1):1–11

    Article  CAS  Google Scholar 

  43. Zenkevich IG (2006) Russ J Phys Chem 80(10):1636–1642

    Article  CAS  Google Scholar 

  44. Zenkevich IG (2006) Russ J Gen Chem 76(11):1738–1741

    Article  CAS  Google Scholar 

  45. Zenkevich IG (2006) Russ J Gen Chem 76(11):1742–1753

    Article  CAS  Google Scholar 

  46. Zenkevich IG (2007) Russ J Struct Chem 48(6):1006–1014

    Article  CAS  Google Scholar 

  47. Zenkevich IG (2008) Russ J Phys Chem 82(5):695–703

    Article  CAS  Google Scholar 

  48. Zenkevich IG (2009) J Chemom 23:179–187

    Article  CAS  Google Scholar 

  49. Zenkevich IG (2009) J Math Chem 46:913–933

    Article  CAS  Google Scholar 

  50. Zenkevich IG (2010) J Chemom 24:158–167

    Article  CAS  Google Scholar 

  51. Zenkevich IG (2011) Recurrent relationships in organic chemistry. In: Kostikov RR (ed) Contemporary problems of organic chemistry, vol 15. University Press, St Petersburg, pp 235–284

  52. Zenkevich IG, Makarov ED (2007) J Chromatogr A 1150:117–123

    Article  CAS  Google Scholar 

  53. Zenkevich IG (1984) Russ J Anal Chem 39(7):1297–1307

    CAS  Google Scholar 

  54. Zenkevich IG, Ioffe BV (1988) J Chromatogr 439:185–194

    Article  CAS  Google Scholar 

  55. Zenkevich IG (2010) Kovats’ retention index system. In: Cazes J (ed) Encyclopedia of Chromatography, vol 2, 3rd edn. Taylor & Francis, Boca Raton, pp 1304–1310

  56. Zenkevich IG (1995) Russ J Appl Chem 68(8):1321–1327

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor G. Zenkevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenkevich, I.G. Evaluating the Holdup Time of Gas-Chromatographic Systems in Various Temperature Regimes by Using Recurrent Relations. Chromatographia 75, 767–777 (2012). https://doi.org/10.1007/s10337-012-2260-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2260-2

Keywords

Navigation