Skip to main content
Log in

Simultaneous Prediction of the Logarithmic Capacity Factor of Some Aliphatic and Aromatic Compounds on Five Different Stationary Phases in RP-LC Using Artificial Neural Network

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The present work is a quantitative structure-retention relationship (QSRR) study based on multiple linear regressions (MLR) and artificial neural network (ANN) to predict the retention behavior of solutes in reverse-phase liquid chromatography based on their structures. To attain this goal, the capacity factors (log k′) of a collection of 65 aliphatic and aromatic solutes on five stationary phases (Zorbax SB-C18, Zorbax Rx-C18, Hypersil C18, Hypersil C8 and Zorbax C8) were selected as a data set. By using Dragon software, various descriptors were calculated for all molecules in the data set. The descriptors that appeared in this model were selected by stepwise multiple linear regression (MLR). These descriptors were used as inputs of the constructed ANN and its output was logarithm capacity factors of aliphatic and aromatic compounds on five different columns. Comparison between statistical results calculated for MLR and ANN model reveals that all statistics have improved considerably in case of the ANN model. The improved statistics by the ANN would suggest the existence of nonlinear relation between selected molecular descriptors and their retention in reverse phase liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carr PW, Li J, Dallas AJ, Eikens DI, Tan LC (1993) J Chromatogr A 656:113–133

    Article  CAS  Google Scholar 

  2. Dallas AJ (1995) PhD Thesis, University of Minnesota, Minneapolis, MN 55455, USA

  3. Cheong WJ, Carr PW (1998) Anal Chem 60:820–826

    Article  Google Scholar 

  4. Locke DC (1974) J Chrom Sci 12:433–437

    CAS  Google Scholar 

  5. Horvath CS, Melander W, Molnar I (1976) J Chromatogr 125:129–156

    Article  CAS  Google Scholar 

  6. Karger BL, Gant JR, Hartkopf A, Weiner PH (1976) J Chromatogr 128:65–78

    Article  CAS  Google Scholar 

  7. Martire DE, Martire RE, Boehm RE (1983) J Phys Chem 87:1045–1062

    Article  CAS  Google Scholar 

  8. Bohmer MR, Tijessen R, Koopal LK (1991) J Phys Chem 95:6285–6297

    Article  CAS  Google Scholar 

  9. Yonker CR, Zwier TA, Burke MF (1982) J Chromatogr 241:257–268

    Article  CAS  Google Scholar 

  10. Yonker CR, Zwier TA, Burke MF (1982) J Chromatogr 241:269–280

    Article  CAS  Google Scholar 

  11. Slaats EH, Markovski W, Fekete J, Poppe H (1981) J Chromatogr 207:299–323

    Article  CAS  Google Scholar 

  12. Jones JL, Rutan SC (1991) Anal Chem 63:1318–1322

    Article  CAS  Google Scholar 

  13. Carr JW, Harris JM (1986) Anal Chem 58:626–631

    Article  CAS  Google Scholar 

  14. Ma S, Shen S, Haddad N, Tang W, Wang J, Lee H, Yee N, Senanayake C, Grinberg N (2009) J Chromatogr A 1216:1232–1240

    Article  CAS  Google Scholar 

  15. Sander LC, Wise SA (1984) Anal Chem 56:504–510

    Article  CAS  Google Scholar 

  16. Wirth MJ, Fatunmbi HO (1992) Anal Chem 64:2783–2786

    Article  CAS  Google Scholar 

  17. Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279–283

    Article  CAS  Google Scholar 

  18. Kaliszan R (1997) Structure and retention in chromatographic approach. Harwood Academic publishers, Amsterdam

    Google Scholar 

  19. Katritzky AR, Lobanov VS, Karelson M (1998) J Chem Inf Comput Sci 38:28–41

    Article  CAS  Google Scholar 

  20. Kaliszan R, Van Straten MA, Markuszewski M, Cramers CA, Claessens HA (1999) J Chromatogr A 855:455–486

    Article  CAS  Google Scholar 

  21. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  22. Fausett L (1994) Fundamentals of neural networks. Prentice Hall, New York

    Google Scholar 

  23. Vegas JM, Zufiria PJ (2004) Neural Netw 17:233–245

    Article  Google Scholar 

  24. Tan LC, Carr PW, Abraham MH (1996) J Chromatogr A 752:1–18

    Article  CAS  Google Scholar 

  25. Stadalius MA, Berus JS, Snyder LR (1988) LC-GC 6:494–500

    CAS  Google Scholar 

  26. Hyperchem, re. 4. for Windows (1995) Autodesk, Sansalito, CA

  27. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  28. Karelson M (2000) Molecular Descriptors in QSAR/QSPR. Wiley-Interscience, New York

    Google Scholar 

  29. Todeschini R, Consonni V (2000) Hand book of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  30. Todeschini R, Consonni V, Pavan M, Pisani V (2003) Dragon software version 3.0, Milano, Italy

  31. Neter J, Wasserman W, Kutner M (1990) Applied linear statistical models, 3rd edn edn. Irwin, Homewood

    Google Scholar 

  32. Gasteiger J, Zupan J (1993) Angew Chem 32:503–527

    Article  Google Scholar 

  33. Aleksander I, Morton H (1990) An Introduction to neural computing. Chapman and Hall, London

    Google Scholar 

  34. Farková M, Peña-Méndez EM, Havel J (1999) J Chromatogr A 848: 365–374

    Google Scholar 

  35. Gramatica P, Corradi M, Consonni V (2000) Chemosphere 41:763–777

    Article  CAS  Google Scholar 

  36. Todeschini R, Gramatica P (1997) Quant Struct Act Relatsh 16:120–125

    Article  CAS  Google Scholar 

  37. Zupan J, Gasteiger J (1993) Neural networks for chemists: an introduction. VCH-Verlag, Weinheim

    Google Scholar 

  38. Haykin S (1999) Neural networks, a comprehensive foundation. Pearson, 2nd edn, vol 1. Education, New Jersey, pp 156–256

  39. Jalali-Heravi M, Fatemi MH (1998) J Chromatogr A 825:161–169

    Article  CAS  Google Scholar 

  40. Jalali-Heravi M, Fatemi MH (2000) J Chromatogr A 897:227–235

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Dashtbozorgi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dashtbozorgi, Z., Golmohammadi, H. & Konoz, E. Simultaneous Prediction of the Logarithmic Capacity Factor of Some Aliphatic and Aromatic Compounds on Five Different Stationary Phases in RP-LC Using Artificial Neural Network. Chromatographia 75, 701–710 (2012). https://doi.org/10.1007/s10337-012-2257-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2257-x

Keywords

Navigation