Skip to main content
Log in

Artificial Neural Network Modelling of the Retention of Acidic Analytes in Strong Anion-Exchange HPLC: Elucidation of Structure-Retention Relationships

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Computational models can be used to increase understanding of physical processes within chromatographic systems, leading to more efficient method development and optimisation strategies. In ion-exchange chromatography, various models have been derived to predict retention time; however, there remains a gap in understanding regarding the elucidation of fundamental processes contributing to retention. Here, artificial neural networks have been used to model retention of simple acidic analytes by strong anion-exchange HPLC in an attempt to understand what other factors aside from simple electrostatic interactions between ionised analyte, stationary phase and counter-ion contribute to the differential elution order of such compounds. The weights assigned by each neuron to the inputs in trained networks were used to infer the influence of a number of physicochemical analyte properties to retention under various conditions. These showed that several retention mechanisms were operating simultaneously, and that the contribution of each varied as eluent ionic strength and composition were altered at constant apparent pH. Analyte pKa had most influence on retention under most conditions, but analyte volume, LogP, and steric and electronic effects were also prominent, especially in eluents containing water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buszewski B, Bocian S, Nowaczyk A (2010) J Sep Sci 33:2060–2068. doi:10.1002/jssc.201000101

    Article  CAS  Google Scholar 

  2. Agatonovic-Kustrin S, Zecevic M, Zivanovic L (1999) J Pharm Biomed 21:95–103. doi:10.1016/S0731-7085(99)00133-8

    Article  CAS  Google Scholar 

  3. Aschi M, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 582:235–242. doi:10.1016/j.aca.2006.09.008

    Article  CAS  Google Scholar 

  4. Kaliszan R, Baczek T, Bucinski A, Buszewski B, Sztupecka M (2003) J Sep Sci 26:271–282. doi:10.1002/jssc.200390033

    Article  CAS  Google Scholar 

  5. Tham SY, Agatonovic-Kustrin S (2002) J Pharm Biomed 28:581–590. doi:10.1016/S0731-7085(01)00690-2

    Article  CAS  Google Scholar 

  6. Wang Y, Zhang X, Yao X, Gao Y, Liu M, Hu Z, Fan B (2002) Anal Chim Acta 463:89–97. doi:10.1016/S0003-2670(02)00376-8

    Article  CAS  Google Scholar 

  7. Zakaria P, Dicinoski G, Ng BK, Shellie RA, Hanna-Brown M, Haddad P (2009) J Chromatogr A 1216:6600–6610. doi:10.1016/j.chroma.2009.07.051

    Article  CAS  Google Scholar 

  8. Zakaria P, Dicinoski G, Hanna-Brown M, Haddad PR (2010) J Chromatogr A 1217:6069–6076. doi:10.1016/j.chroma.2010.07.040

    Article  CAS  Google Scholar 

  9. Agatonovic-Kustrin S, Zecevic M, Zivanovic L, Tucker IG (1998) J Pharm Biomed 17:69–76. doi:10.1016/S0731-7085(97)00170-2

    Article  CAS  Google Scholar 

  10. Glass B, Agatonovic-Kustrin S, Chen Y, Wisch M (2007) J Chromatogr Sci 45:35–44

    Google Scholar 

  11. Havel J, Madden J, Haddad P (1999) Chromatographia 49:481–488

    Article  CAS  Google Scholar 

  12. Marengo E, Gennaro MC, Angelino S (1998) J Chromatogr A 799:47–55. doi:10.1016/S0021-9673(97)01027-3

    Article  CAS  Google Scholar 

  13. Sacchero G, Concetta Bruzzoniti M, Sarzanini C, Mentasti E, Metting HJ, Coenegracht PMJ (1998) J Chromatogr A 799:35–45. doi:10.1016/S0021-9673(97)01044-3

    Article  CAS  Google Scholar 

  14. Novotná K, Havliš J, Havel J (2005) J Chromatogr A 1096:50–57. doi:10.1016/j.chroma.2005.06.048

    Article  Google Scholar 

  15. Webb R, Doble P, Dawson M (2009) J Chromatogr B 877:615–620. doi:10.1016/j.jchromb.2009.01.012

    Article  CAS  Google Scholar 

  16. Bolanca T, Cerjan Stefanovic S, Ukic S, Lusa M, Rogosic M (2009) Chromatographia 70:15–20. doi:10.1365/s10337-009-1126-8

    Article  CAS  Google Scholar 

  17. Quiming N, Denola N, Saito Y, Jinno K (2007) Anal Bioanal Chem 388:1693–1706. doi:10.1007/s00216-007-1415-8

    Article  CAS  Google Scholar 

  18. Quiming NS, Denola NL, Ueta I, Saito Y, Tatematsu S, Jinno K (2007) Anal Chim Acta 598:41–50. doi:10.1016/j.aca.2007.07.039

    Article  CAS  Google Scholar 

  19. Al-Haj M, Kaliszan R, Buszewski B (2001) J Chromatogr Sci 39:29–38

    CAS  Google Scholar 

  20. Al-Haj MA, Kaliszan R, Nasal A (1999) Anal Chem 71:2976–2985. doi:10.1021/ac9901586

    Article  CAS  Google Scholar 

  21. Kaliszan R, van Straten MA, Markuszewski M, Cramers CA, Claessens HA (1999) J Chromatogr A 855:455–486. doi:10.1016/S0021-9673(99)00742-6

    Article  CAS  Google Scholar 

  22. Szepesy L (2002) J Chromatogr A 960:69–83. doi:10.1016/S0021-9673(02)00243-1

    Article  CAS  Google Scholar 

  23. Gu RF, Jezorek JR (2001) J Chromatogr A 919:21–28. doi:10.1016/S0021-9673(01)00786-5

    Article  CAS  Google Scholar 

  24. Morgan PE, Hanna-Brown M, Flanagan RJ (2006) Biomed Chromatogr 20:765–773. doi:10.1002/bmc.595

    Article  CAS  Google Scholar 

  25. Nazir J, Barlow DJ, Lawrence MJ, Richardson CJ, Shrubb I (2002) Pharm Res 19:1130–1136. doi:10.1023/A:1019889907976

    Article  CAS  Google Scholar 

  26. Richardson CJ, Barlow DJ (1996) J Pharm Pharmacol 48:581–591. doi:10.1111/j.2042-7158.1996.tb05978.x

    Article  CAS  Google Scholar 

  27. Charton M (1981) In: Taft RW (ed) Progress in physical organic chemistry, vol 13. John Wiley & Sons, Inc., Hoboken

    Chapter  Google Scholar 

  28. Charton M (1975) J Am Chem Soc 97:1552–1556. doi:10.1021/ja00839a047

    Article  CAS  Google Scholar 

  29. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165–195. doi:10.1021/cr00002a004

    Article  CAS  Google Scholar 

  30. Richardson CJ, Mbanefo A, Aboofazeli R, Lawrence MJ, Barlow DJ (1997) J Colloid Interface Sci 187:296–303. doi:10.1006/jcis.1996.4678

    Article  CAS  Google Scholar 

  31. Law B, Hussain MA (2000) J Pharm Biomed 22:149–154. doi:10.1016/S0731-7085(99)00284-8

    Article  CAS  Google Scholar 

  32. Reber Brown F, Draper WM (1989) J Chromatogr A 479:441–444. doi:10.1016/S0021-9673(01)83361-6

    Article  Google Scholar 

  33. Flanagan RJ, Morgan PE, Spencer EP, Whelpton R (2006) Biomed Chromatogr 20:530–538. doi:10.1002/bmc.671

    Article  CAS  Google Scholar 

  34. Couchman L, Morgan PE, Flanagan RJ (2011) Biomed Chromatogr 25:867–872. doi:10.1002/bmc.1530

    Article  CAS  Google Scholar 

  35. Croes K, McCarthy PT, Flanagan RJ (1995) J Chromatogr A 693:289–306. doi:10.1016/0021-9673(94)01116-V

    Article  CAS  Google Scholar 

  36. Morgan PE, Tapper J, Spencer EP (2003) J Chromatogr B 798:211–215. doi:10.1016/j.jchromb.2003.09.046

    Article  CAS  Google Scholar 

  37. Carlucci G, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 601:68–76. doi:10.1016/j.aca.2007.08.026

    Article  CAS  Google Scholar 

  38. Jansen M, Kiwata J, Arceo J, Faull K, Hanrahan G, Porter E (2010) Anal Bioanal Chem 397:2367–2374. doi:10.1007/s00216-010-3778-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip E. Morgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, P.E., Barlow, D.J., Hanna-Brown, M. et al. Artificial Neural Network Modelling of the Retention of Acidic Analytes in Strong Anion-Exchange HPLC: Elucidation of Structure-Retention Relationships. Chromatographia 75, 693–700 (2012). https://doi.org/10.1007/s10337-012-2251-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2251-3

Keywords

Navigation