Skip to main content

Advertisement

Log in

GC–MS Based Serum Metabolomic Analysis of Isoflurane-Induced Postoperative Cognitive Dysfunctional Rats: Biomarker Screening and Insight into Possible Pathogenesis

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Postoperative cognitive dysfunction (POCD) is a subtle cognitive dysfunction, especially memory impairment for weeks or months after surgery. The underlying pathophysiological mechanism of POCD is still unclear. The aim of this study was to exploratively investigate the potential mechanism of POCD by identifying the differences among metabolic profiles of control rats, POCD and no-POCD rats after isoflurane anesthesia based on GC–MS, and subsequently discovering POCD biomarkers. In this paper, a feature-variable selection method, subwindow permutation analysis (SPA), was employed to seek the key metabolites distinguishing POCD from control group, POCD from no-POCD group. Fortunately, two key metabolites, hexadecanoic acid and myo-Inositol, were both screened out for discriminating POCD and control, POCD and no-POCD rats. It suggested that they may reveal the disturbances between POCD and control, POCD and no-POCD rats, which may be the potential biomarkers of POCD. Furthermore, related possible pathogenesis was taken into account on the basis of the relevant literatures and pathway databases. It suggested that POCD was probably related to disturbed hexadecanoic acid metabolism and myo-Inositol metabolism. All the results demonstrated that the proposed metabolic profiling approach and SPA method may be effective for exploring metabolic perturbations and possible biomarkers for POCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hu ZH, Ou YW, Duan KM, Jiang XZ (2010) Med Hypotheses 74:722–724

    Article  CAS  Google Scholar 

  2. Kalenka A, Gross B, Maurer MH, Thierse HJ, Feldmann RE (2010) J Neurosurg Anesth 22:144–154

    Article  Google Scholar 

  3. Xie ZC, Tanzi RE (2006) Exp Gerontol 41:346–359

    Article  CAS  Google Scholar 

  4. Carnini A, Lear JD, Eckenhoff RG (2007) Curr Alzheimer Res 4:233–241

    Article  CAS  Google Scholar 

  5. Xie ZC, Dong YL, Maeda U, Moir RD, Xia WM, Culley DJ, Crosby G, Tanzi RE (2007) J Neurosci 27:1247–1254

    Article  CAS  Google Scholar 

  6. Grocott HP, Mackensen GB, Grigore AM, Mathew J, Reves JG, Phillips-Bute B, Smith PK, Newman MF (2002) Stroke 33:537–541

    Article  Google Scholar 

  7. Quinones MP, Kaddurah-Daouk R (2009) Neurobiol Dis 35:165–176

    Article  CAS  Google Scholar 

  8. Trygg J, Holmes E, Lundstedt T (2007) J Proteome Res 6:469–479

    Article  CAS  Google Scholar 

  9. Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, Moritz T (2004) Anal Chem 76:1738–1745

    Article  CAS  Google Scholar 

  10. Li HD, Liang YZ, Xu QS, Cao DS (2010) J Chemom 24:418–423

    Article  Google Scholar 

  11. Li HD, Zeng MM, Tan BB, Liang YZ, Xu QS, Cao DS (2010) Metabolomics 6:353–361

    Article  CAS  Google Scholar 

  12. Zeng MM, Liang YZ, Li HD, Wang M, Wang B, Chen X, Zhou N, Cao DS, Wu J (2010) J Pharmaceut Biomed 52:265–272

    Article  CAS  Google Scholar 

  13. Rudell DR, Mettheis JP, Curry EA (2008) J Agr Food Chem 56:1138–1147

    Article  CAS  Google Scholar 

  14. Shepherd T, Dobson G, Verrall SR, Conner S, Griffiths DW, McNicol JM, Davies HD, Stewart D (2007) Metabolomics 3:475–488

    Article  CAS  Google Scholar 

  15. Kvalheim OM, Liang YZ (1992) Anal Chem 64:936–946

    Article  CAS  Google Scholar 

  16. Liang YZ, Kvalheim OM, Keller HR, Massart DL, Kiechle P, Erni F (1992) Anal Chem 64:946–953

    Article  CAS  Google Scholar 

  17. Wang M, Xiong YH, Zeng MM, Li HD, Zhang TM, Liang YZ (2010) Chromatographia 71:891–897

    Article  CAS  Google Scholar 

  18. Tan BB, Liang YZ, Yi LZ, Li HD, Zhou ZG, Ji XY, Deng JH (2009) Metabolomics 6:219–228

    Article  Google Scholar 

  19. Filzmoser P, Liebmann B, Varmuza K (2009) J Chemom 23:160–171

    Article  CAS  Google Scholar 

  20. Mann HB, Whitney DR (1947) Ann Math Stat 18:50–60

    Article  Google Scholar 

  21. Gustafson Y, Brännström B, Berggren D, Ragnarsson JI, Sigaard J, Bucht G, Reiz S, Norberg A, Winblad B (1991) J Am Geriatr Soc 39:655–662

    CAS  Google Scholar 

  22. Williams-Russo P, Urquhart BL, Sharrock NE, Charlson ME (1992) J Am Geriatr Soc 40:759–767

    CAS  Google Scholar 

  23. Vaucher E, Aumont N, Pearson D, Rowe W, Poirier J, Kar S (2001) J Chem Neuroanat 21:323–329

    Article  CAS  Google Scholar 

  24. Li NJ, Liu WT, Li W, Li SQ, Chen XH, Bi KS, He P (2010) Clin Biochem 43:992–997

    Article  CAS  Google Scholar 

  25. Shimohama S, Tanino H, Sumida Y, Tsuda J, Fujimoto S (1998) Neurosci Lett 245:159–162

    Article  CAS  Google Scholar 

  26. Stokes CE, Hawthorne JN (1987) J Neurochem 48:1018–1021

    Article  CAS  Google Scholar 

  27. Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD (1993) Radiology 187:433–437

    CAS  Google Scholar 

  28. Shonk TK, Ross BD (1995) Magn Reson Med 33:858–861

    Article  CAS  Google Scholar 

  29. Patil S, Chan C (2005) Neurosci Lett 384:288–293

    Article  CAS  Google Scholar 

  30. El-Husseini AED, Bredt DS (2002) Nat Rev Neurosci 3:791–802

    Article  CAS  Google Scholar 

  31. Gauthier-Campbell C, Bredt DS, Murphy TH, El-Husseini AED (2004) Mol Biol Cell 15:2205–2217

    Article  CAS  Google Scholar 

  32. Merrill AH (2002) J Biol Chem 277:25843–25846

    Article  CAS  Google Scholar 

  33. Kolesnick R (2002) J Clin Invest 110:3–8

    CAS  Google Scholar 

  34. Yang F, Yan SK, Wang F, He Y, Guo YJ, Zhou Q, Wang Y, Zhang XY, Zhang WD, Sun SH (2008) J Proteome Res 7:741–748

    Article  CAS  Google Scholar 

  35. Bourbon NA, Sandirasegarane L, Kester M (2002) J Biol Chem 277:3286–3292

    Article  CAS  Google Scholar 

  36. Hu W, Xu RJ, Zhang GF, Jin JF, Szulc ZM, Bielawski J, Hannun YA, Obeid LM, Mao CG (2005) Mol Biol Cell 16:1555–1567

    Article  CAS  Google Scholar 

  37. Majerus PW (1992) Annu Rev Biochem 61:225–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Nature Foundation Committee of P.R. China (Grants No. 20875104, 21105129 and 21075138), the international cooperation project on traditional Chinese medicines of ministry of science and technology of China (Grant No. 2007DFA40680), Special Foundation of China Postdoctoral Science (No. 200902481) and the Fundamental Research Funds for the Central Universities (2010QZZD010 and 2011QNZT053). The studies have been approved by the university’s review board. We are grateful to all employees of this institute for their encouragement and support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizeng Liang or Lunzhao Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Zhang, L., Li, H. et al. GC–MS Based Serum Metabolomic Analysis of Isoflurane-Induced Postoperative Cognitive Dysfunctional Rats: Biomarker Screening and Insight into Possible Pathogenesis. Chromatographia 75, 799–808 (2012). https://doi.org/10.1007/s10337-012-2246-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2246-0

Keywords

Navigation