Skip to main content
Log in

Hydrodynamic Characteristics and Adsorption Particularity of Nanobiological Feedstock Along the Bed Height in a Novel Chromatography Column

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Expanded bed adsorption (EBA) is a practical method for the separation of nanoparticulates. In order to analysis the local hydrodynamic and adsorption behavior of nanoparticle (NP)-based biological feedstock, a modified Nano Biotechnology Group EBA column with a 26-mm inner diameter was used to withdraw liquid from different axial positions of the column. Fabricated egg albumin (EA) NPs with an average size of 70 nm were employed as a model system and viral size/charge mimic to assess the relationship between hydrodynamic and adsorption performance of NPs at the different column regions. The effects of influential factors, including flow velocity and initial concentration of NPs, on NP hydrodynamic behavior and adsorption kinetics along the bed height were investigated. NP hydrodynamic studies confirmed that non-uniform behavior dominated the system and a decreasing trend of liquid mixing/dispersion with increase of bed height was observed in this column. The results demonstrated an increase in the mixing/dispersion at certain bed heights with the increase in both the velocity and feed initial concentration. Breakthrough curves were measured at various column points to determine the adsorption performance [dynamic binding capacity (DBC) and yield] in different bed positions/zones. Yield and DBC of NPs were improved along the bed height, whereas liquid velocity had the opposite effect. Increasing the initial concentration of NPs enhanced only the DBC. Separation of EA NPs under optimal conditions was 87 %, which is an excellent result for a one-pass frontal chromatography method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B o :

Bodenstein number

C :

Exit concentration of NPs in bed effluent (kg m−3)

C o :

Initial concentration of NPs (kg m−3)

C 9 :

Exit concentration that has left the 9-cm sample port and is measured at this port (kg m−3)

C 12 :

Exit concentration that has left the 12-cm sample port and is measured at this port (kg m−3)

D axl :

Axial dispersion coefficient (m2 s−1)

H :

Bed height (m)

H sb :

Settled bed height (m)

h :

Axial bed height (m)

N :

Theoretical plate

\( \bar{t} \) :

Residence time (s)

U :

Superficial flow velocity (m s−1)

V f,9 :

Volume of feed loaded onto the column until C 9 reaches a certain degree of NP breakthrough (m3)

V f,12 :

Volume of feed loaded onto the column until C 12 reaches a certain degree of NP breakthrough (m3)

V l :

Liquid volume above the particles in the sampling syringe (m3)

V L,0–9 :

Liquid volume present in the bed voidage for the 0- to 9-cm column zone (m3)

V L,0–12 :

Liquid volume present in the bed voidage for the 0- to 12-cm column zone (m3)

V s,0–9 :

Settled volume of adsorbent in the 0- to 9-cm column zone (m3)

V s,9–12 :

Settled volume of adsorbent in the 9- to 12-cm column zone (m3)

V o :

Volume of the particles in the sampling syringe (m3)

ε:

Bed voidage

ε i :

Local bed voidage at ith layer of bed

δ:

Variance (s)

References

  1. Jahanshahi M, Ebrahimpour M (2009) Chromatographia 70:1553–1560. doi:10.1365/s10337-009-1369-4

    Article  CAS  Google Scholar 

  2. Jahanshahi M, Najafpour Gh, Ebrahimpour M, Hajizadeh S, Shahavi MH (2009) Phys Status Solidi C 6(10):2199–2206. doi:10.1002/pssc.200881737

    Article  CAS  Google Scholar 

  3. Jahanshahi M, Martinez L, Hajizadeh S (2008) J Chromatogr A 1203(1):13–20. doi:10.1016/j.chroma.2008.07.028

    Article  CAS  Google Scholar 

  4. Padilha GdS, Curvelo-Santana JC, Alegre RM, Tambourgi EB (2009) J Chromatogr B 877:521–526. doi:10.1016/j.jchromb.2008.12.061

    Article  CAS  Google Scholar 

  5. Pinotti LM, Fonseca LP, Prazeres DMF, Rodrigues DS, Nucci ER, Giordano RLC (2009) Biochem Eng J 44:111–118. doi:10.1016/j.bej.2008.11.006

    Article  CAS  Google Scholar 

  6. Song H-B, Xiao Zh-F, Yuan Q-P (2009) J Chromatogr A 1216:5001–5010. doi:10.1016/j.chroma.2009.04.061

    Article  CAS  Google Scholar 

  7. Zhao J, Lin D-Q, Wang Y-Ch, Yao Sh-J (2010) Carbohydr Polym 80:1085–1090. doi:10.1016/j.carbpol.2010.01.028

    Article  CAS  Google Scholar 

  8. Li J, Chase HA (2009) J Chromatogr A 1216:8730–8740. doi:10.1016/j.chroma.2009.02.092

    Article  CAS  Google Scholar 

  9. Vennapusa RR, Tari C, Cabrera R, Fernandez-Lahore M (2009) Biochem Eng J 43:16–26. doi:10.1016/j.bej.2008.08.004

    Article  CAS  Google Scholar 

  10. Tong X-D, Sun Y (2002) J Chromatogr A 977:173–183. doi:10.1016/S0021-9673(02)01390-0

    Article  CAS  Google Scholar 

  11. Yun J, Lin D-Q, Yao Sh-J (2005) J Chromatogr A 1095:16–26. doi:10.1016/j.chroma.2005.07.120

    Article  CAS  Google Scholar 

  12. Li P, Xiu G, Rodrigues AE (2004) Chem Eng Sci 59:3837–3847. doi:10.1016/j.ces.2004.06.008

    Article  CAS  Google Scholar 

  13. Moraes CC, Mazutti MA, Rodrigues MI, Filho FM, Kalil SJ (2009) J Chromatogr A 1216:4395–4401. doi:10.1016/j.chroma.2009.03.027

    Article  CAS  Google Scholar 

  14. Balasundaram B, Harrison STL (2008) J Biotechnol 133:360–369. doi:10.1016/j.jbiotec.2007.07.724

    Article  CAS  Google Scholar 

  15. Kaczmarski K, Bellot J-Ch (2005) J Chromatogr A 1069:91–97. doi:10.1016/j.chroma.2004.09.077

    Article  CAS  Google Scholar 

  16. Yun J, Yao Sh-J, Lin D-Q (2005) Chem Eng J 109:123–131. doi:10.1016/j.cej.2005.03.015

    Article  CAS  Google Scholar 

  17. Yun J, Yao Sh-J, Lin D-Q, Lu M-H, Zhao W-T (2004) Chem Eng Sci 59:449–457. doi:10.1016/j.ces.2003.10.009

    Article  CAS  Google Scholar 

  18. Bruce LJ, Chase HA (2001) Chem Eng Sci 56:3149–3162 doi:10.1016/S0009-2509(00)00549-2

    Article  CAS  Google Scholar 

  19. Willoughby NA, Hjorth R, Titchener-Hooker NJ (2000) Biotechnol Bioeng 69:648–653

    Article  CAS  Google Scholar 

  20. Ebrahimpour M, Jahanshahi M, Hosenian AH (2010) Chromatographia 72:383–391. doi:10.1365/s10337-010-1676-9

    Article  CAS  Google Scholar 

  21. Shahavi MH, Najafpour GD, Jahanshahi M (2008) Afr J Biotechnol 7(23):4336–4344

    CAS  Google Scholar 

  22. Rahimnejad M, Jahanshahi M, Najafpour GD (2006) Afr J Biotechnol 5(20):1918–1923

    CAS  Google Scholar 

  23. Mehravar R, Jahanshahi M, Saghatoleslami N (2009) Dyn Biochem Process Biotechnol Mol Biol 3:51–56

    Google Scholar 

  24. Mehravar R, Jahanshahi M, Saghatoleslami N (2009) Afr J Biotechnol 8(24):6822–6827

    CAS  Google Scholar 

  25. Jahanshahi M, Sanati MH, Hajizadeh S, Babaei Z (2008) Phys Status Solidi A 205:2898–2902. doi:10.1002/pssa.200824329

    Article  CAS  Google Scholar 

  26. Jahanshahi M, Sanati MH, Babaei Z (2008) J Appl Stat 35:1345–1353. doi:10.1080/02664760802382426

    Article  Google Scholar 

  27. Jahanshahi M, Sun Y, Santos E, Pacek A, Franco TT, Ninow A, Lyddiatt A (2002) Biotechnol Bioeng 80:201–212. doi:10.1002/bit.10360

    Article  CAS  Google Scholar 

  28. Amersham Biosciences (1998) Expanded bed adsorption. Pharma Biotech, Uppsala

  29. Jahanshai M, Pacek AW, Nienow AW, Lyddiatt A (2003) J Chem Technol Biotechnol 78:1111–1120. doi:10.1002/jctb.907

    Article  Google Scholar 

  30. Biazus JPM, Severo J, Únior JB, Santana JCC, Souza RR, Tambourgi EB (2006) Process Biochem 41:1786–1791. doi:10.1016/j.procbio.2006.03.025

    Article  CAS  Google Scholar 

  31. Najafpour GD (2007) Biochemical engineering and biotechnology, chap 17. Elsevier, Amsterdam

  32. Ng MYT, Tan WS, Abdullah N, Ling TCh, Tey BT (2007) J Chromatogr A 1172:47–56. doi:10.1016/j.chroma.2007.09.065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge members of the Nanotechnology Research Institute of Babol University of Technology, Babol, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahanshahi, M., Mosavian, M.T.H. & Otaghsara, E.S.T. Hydrodynamic Characteristics and Adsorption Particularity of Nanobiological Feedstock Along the Bed Height in a Novel Chromatography Column. Chromatographia 75, 585–596 (2012). https://doi.org/10.1007/s10337-012-2235-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2235-3

Keywords

Navigation