Skip to main content
Log in

Preparation of Titania Monolith Column and Application in Determination of Benzoic Acid by HILIC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The titania monolith column has been synthesized through a template-free sol–gel route, and a simple and reliable method for the determination of benzoic acid by hydrophilic interaction liquid chromatography using the prepared titania monolith has been developed. The influences of acetonitrile, acetate buffer and buffer pH on the retention of benzoic acid were investigated. Benzoic acid in carbonated drinks and fruit beverages samples were determined within 5 min and quantitative analysis was carried out by external standard method with a correlation coefficient (R 2) of 0.9984. The relative standard deviation was 0.91 % and the recovery ranged from 92.5 to 101.3 %. The proposed method is suitable for the analysis of benzoic acid in beverage samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Randon J, Guerrin JF, Rocca JL (2008) Synthesis of titania monoliths for chromatographic separations. J Chromatogr A 1214:183–186

    Article  CAS  Google Scholar 

  2. Chen Y, Yi Y, Brennan JD, Brook MA (2006) Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem Mater 18:5326–5335

    Article  CAS  Google Scholar 

  3. Zhou T, Lucy CA (2008) Hydrophilic interaction chromatography of nucleotides and their pathway intermediates on titania. J Chromatogr A 1187:87–93

    Article  CAS  Google Scholar 

  4. Ozawa M, Tani K, Nomura A, Tachibana M, Koizumi H, Kiba N (2009) Retention behavior of nucleic acid bases and purine derivatives on titania. Chromatographia 70:533–537

    Article  CAS  Google Scholar 

  5. Ozawa M, Tani K, Tachibana M, Koizumi H, Kiba N (2010) Retention behavior of purine-like compounds on titania and the effect of organic modifiers content in the mobile phase. Chromatographia 72:313–316

    Article  CAS  Google Scholar 

  6. Zhou T, Lucy CA (2010) Separation of carboxylates by hydrophilic interaction liquid chromatography on titania. J Chromatogr A 1217:82–88

    Article  CAS  Google Scholar 

  7. Zhao J, Jiang ZT, Lu GR, Tan J, Li R (2010) Determination of phosphatidylcholine in soybean lecithin samples by high performance liquid chromatography on titania. Anal Methods 2:1779–1783

    Article  CAS  Google Scholar 

  8. Tan J, Li R, Jiang ZT (2011) Determination of thiamine (vitamin B1) in pharmaceutical tablets and human urines by titania-based hydrophilic interaction chromatography. Anal Methods 7:1568–1573

    Article  Google Scholar 

  9. Guarino C, Fuselli F, Mantia LA, Longo L (2011) Development of an RP-HPLC method for the simultaneous determination of benzoic acid, sorbic acid, natamycin and lysozyme in hard and pasta filata cheeses. Food Chem 127:1294–1299

    Article  CAS  Google Scholar 

  10. Saad B, Bari MF, Saleh MI, Ahmad K, Talib MKM (2005) Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography. J Chromatogr A 1073:393–397

    Article  CAS  Google Scholar 

  11. Mota FJM, Ferreira IMPLVO, Cunha SC, Beatriz M, Oliveira PP (2003) Optimisation of extraction procedures for analysis of benzoic and sorbic acids in foodstuffs. Food Chem 82:469–473

    Article  CAS  Google Scholar 

  12. Hemström P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821

    Article  Google Scholar 

  13. Backlund S, Smatt JH, Rosenholm JB, Linden M (2007) Template-free sol–gel synthesis of hierarchically macro- and mesoporous monolithic TiO2. J Dispers Sci Technol 28:115–119

    Article  CAS  Google Scholar 

  14. Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki S, Ohira M (2009) Sol–gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds. J Chromatogr A 1216:7375–7383

    Article  CAS  Google Scholar 

  15. Guo Y, Gaiki S (2005) Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J Chromatogr A 1074:71–80

    Article  CAS  Google Scholar 

  16. Randon J, Huguet S, Demesmay C, Berthod A (2010) Zirconia based monoliths used in hydrophilic-interaction chromatography for original selectivity of xanthines. J Chromatogr A 1217:1496–1500

    Article  CAS  Google Scholar 

  17. Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki S, Ohira M (2009) Sol–gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds. J Chromatogr A 1216:7375–7383

    Article  CAS  Google Scholar 

  18. Guo Y, Srinivasan S, Gaiki S (2007) Investigating the effect of chromatographic conditions on retention of organic acids in hydrophilic interaction chromatography using a design of experiment. Chromatographia 66:223–229

    Article  CAS  Google Scholar 

  19. Quiming NS, Denola NL, Saito Y, Catabay AP, Jinno K (2008) Chromatographic behavior of uric acid and methyl uric acids on a diol column in HILIC. Chromatographia 67:507–515

    Article  CAS  Google Scholar 

  20. Guo Y, Gaiki S (2005) Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J Chromatogr A 1074:71–80

    Article  CAS  Google Scholar 

  21. Bicker W, Wu JY, Lammerhofer M, Lindner W (2008) Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. J Sep Sci 31:2971–2987

    Article  CAS  Google Scholar 

  22. Liu M, Chen EX, Ji R, Semin D (2008) Stability-indicating hydrophilic interaction liquid chromatography method for highly polar and basic compounds. J Chromatogr A 1188:255–263

    Article  CAS  Google Scholar 

  23. Wu JY, Bicker W, Lindner WG (2008) Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode. J Sep Sci 31:1492–1503

    Article  CAS  Google Scholar 

  24. Hao ZG, Lu CY, Xiao BM, Weng ND, Parker B, Knapp M, Ho CT (2007) Separation of amino acids, peptides and corresponding Amadori compounds on a silica column at elevated temperature. J Chromatogr A 1147:165–171

    Article  CAS  Google Scholar 

  25. Tanaka H, Zhou XJ, Masayoshi O (2003) Characterization of a novel diol column for high-performance liquid chromatography. J Chromatogr A 987:119–125

    Article  CAS  Google Scholar 

  26. Bidlingmeyer BA, Henderson J (2004) Investigation of retention on bare silica using reversed-phase mobile phases at elevated temperatures. J Chromatogr A 1060:187–193

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20875069), the Science Foundation for Young Teachers of Tianjin University of Commerce (No. 090107), and Natural Science Foundation of Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Tao Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Jiang, ZT., Li, R. et al. Preparation of Titania Monolith Column and Application in Determination of Benzoic Acid by HILIC. Chromatographia 75, 563–569 (2012). https://doi.org/10.1007/s10337-012-2230-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2230-8

Keywords

Navigation