Advertisement

Chromatographia

, Volume 75, Issue 1–2, pp 7–15 | Cite as

Chain Conformation and Local Rigidity of Isomerized Polyimides in Dimethyl Formamide by Size Exclusion Chromatography Coupled with Multi-Detectors

  • Guihua Liu
  • Xuepeng Qiu
  • Shuqin Bo
  • Xiangling JiEmail author
Original

Abstract

Chain conformation and local rigidity of two isomerized polyimides (PIs), poly(6FDA/3,3′-DMB) and poly(6FDA/2,2′-DMB) in dimethyl formamide (DMF) with either 0.1 M LiBr or 3.1 mM tetrabutylammonium bromide at 35 °C, are investigated. Size exclusion chromatography (SEC) coupled with multi-angle laser light scattering detector, viscometer, and differential refractive index detector was used. The scaling exponents α and ν related to conformation are estimated from the above results. The values of α and ν for poly(6FDA/3,3′-DMB) are 0.68 ± 0.01 and 0.54–0.55 ± 0.01, respectively. The values of α and ν for poly(6FDA/2,2′-DMB) are 0.65 ± 0.02 and 0.55 ± 0.01, respectively, which indicate that both PIs in DMF have a random coil conformation. In particular, poly(6FDA/3,3′-DMB) exhibits more extended conformation than that of poly(6FDA/2,2′-DMB). Parameters related to chain flexibility of polymers, including persistence length l p, shift factor M L (relative molecular weight per unit contour length), and backbone diameter d are evaluated from the relationship between intrinsic viscosity and molecular weight based on the wormlike continuous cylinder model. The three parameters (l p, M L, and d) indicate that the two samples are flexible chains with local rigidity, and poly(6FDA/3,3′-DMB) is slightly stiffer than poly(6FDA/2,2′-DMB). In addition, influence of salt types on the parameters is also discussed.

Keywords

Size exclusion chromatography Chain conformation Isomerized polyimide Local rigidity Persistence length Wormlike chain 

Notes

Acknowledgments

We thank the financial support from the National Natural Science Foundation of China (General: 20674085, Innovation Group: 50921062).

References

  1. 1.
    Ding MX (2006) Polyimide: chemistry, relationship between structure and properties and materials. 21st Century SP’s series in chemistry. Science Press, BeijingGoogle Scholar
  2. 2.
    Feger C, Khojasteh MM, McGrath JE (1989) Polyimides: materials, chemistry and characterization. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Kwan SCM, Wu C, Li FM, Harris FW, Chang SZD (1999) Laser light-scattering studies of soluble high performance fluorine-containing polyimides. Polym Eng Sci 39(3):586–593CrossRefGoogle Scholar
  4. 4.
    Siddiq M, Wu C (2001) Dynamic light-scattering characterization of the molecular weight distribution of unfractionated polyimide. J Appl Polym Sci 81(7):1670–1674CrossRefGoogle Scholar
  5. 5.
    Siddiq M, Hu H, Ding M, Li B, Wu C (1996) Laser light scattering studies of soluble high-performance polyimides: solution properties and molar mass distributions. Macromolecules 29:7426–7431CrossRefGoogle Scholar
  6. 6.
    Tanaka G, Yamakawa H (1973) Intrinsic-viscosity of flexible ring polymers with small exculded volume. Polym J 4(4):446–451CrossRefGoogle Scholar
  7. 7.
    Benoit H, Doty P (1953) Light scattering from non-gaussian chains. J Phys Chem 57(9):5CrossRefGoogle Scholar
  8. 8.
    Liu YG, Bo SQ (2004) Studies of instrumental spreading in gel permeation chromatography by coupling with a two-angle laser light scattering detector. J Liq Chromatogr Relat Technol 27(4):611–627Google Scholar
  9. 9.
    He ZD, Zhang XC, Cheng RS (1982) Simultaneous calibration of molecular weight separation and column dispersion of GPC by coupling with LALLS. J Liq Chromatogr 5(7):1209–1222CrossRefGoogle Scholar
  10. 10.
    Cheng RS, Bo SQ (1984) SEC molecular-weight separation and column dispersion—simultaneous calibration with characterized polymer standards. ACS Symp Ser 245:125–134CrossRefGoogle Scholar
  11. 11.
    Burchard W (1999) Solution properties of branched macromolecules. Adv Polym Sci 143 II:113–194.Google Scholar
  12. 12.
    Liu Y, Bo S (2004) Hydrodynamic radius characterization of a vinyl-type polynorbornene by size-exclusion chromatography with a static and dynamic laser light scattering detector. Chromatographia 59(5):299–303Google Scholar
  13. 13.
    DeGennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  14. 14.
    Bohdanecky M, Kovar J (1982) Viscosity of polymer solutions. Polymer Science Library 2. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  15. 15.
    Flory PJ (1969) Statistical mechanics of chain molecules. Wiley, New YorkGoogle Scholar
  16. 16.
    Elias H-G (1997) An introduction to polymer science. VCH Verlagsgesellschaft mbH, Weinheim & VCH Publishers, Inc., New YorkGoogle Scholar
  17. 17.
    Qiu Z, Wang J, Zhang Q, Zhang S, Ding M, Gao L (2006) Synthesis and properties of soluble polyimides based on isomeric ditrifluoromethyl substituted 1, 4-bis(4-aminophenoxy)benzene. Polymer 47:8444–8452CrossRefGoogle Scholar
  18. 18.
    Xu ZD, Hadjichristidis N, Fetters LJ, Mays JW (1995) Structure/chain-flexibility relationships of polymers. In: Physical properties of polymers, Advances in Polymer Science, vol 120. Springer, Berlin, pp 1–50Google Scholar
  19. 19.
    Yamakawa H, Fujii M (1974) Intrinsic viscosity of wormlike chains—determination of shift factor. Macromolecules 7(1):128–135CrossRefGoogle Scholar
  20. 20.
    Norisuye T (1993) Semiflexible polymers in dilute-solution. Prog Polym Sci 18(3):543–584CrossRefGoogle Scholar
  21. 21.
    Peng Y, Zhang L, Zhang Y, Xu X, Kennedy JF (2005) Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae. Carbohydr Polym 59(3):351–356CrossRefGoogle Scholar
  22. 22.
    Matsumoto A, Tarui T, Otsu T (1990) Dilute-solution properties of semiflexible poly(substituted methylenes)—intrinsic-viscosity of poly(diisopropyl fumarate) in benzene. Macromolecules 23(24):5102–5105CrossRefGoogle Scholar
  23. 23.
    Itou T, Chikiri H, Teramoto A, Aharoni SM (1988) Wormlike chain parameters of poly(hexyl isocyanate) in dilute-solution. Polym J 20(2):143–151CrossRefGoogle Scholar
  24. 24.
    Bohdanecky M (1983) New method for estimating the parameters of the wormlike chain model form the intrinsic viscosity of stiff-chain polymers. Macromolecules 16(9):1483–1492CrossRefGoogle Scholar
  25. 25.
    Kamide K, Saito M (1987) Cellulose and cellulose derivates: recent advances in physical chemistry. In: Advances in polymer science, vol 83. pp 1–56Google Scholar
  26. 26.
    Kim S, Cotts PM, Volksen W (1992) Online measurement of the RMS radius of gyration and molecular-weight of polyimide precursor fractions eluting from a size-exclusive chromatography. J Polym Sci Polym Phys 30(2):177–183CrossRefGoogle Scholar
  27. 27.
    Eyring H (1932) The resultant electric moment of complex molecules. Phys Rev 39(4):746–748CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Guihua Liu
    • 1
    • 2
  • Xuepeng Qiu
    • 3
  • Shuqin Bo
    • 1
  • Xiangling Ji
    • 1
    Email author
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Polymer Composites Engineering Laboratory, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations