, Volume 75, Issue 1–2, pp 25–32 | Cite as

A Convenient Approach to Simultaneous Analysis of a Pharmaceutical Drug and Its Counter-Ion by CE Using Dual-Opposite End Injection and Contactless Conductivity Detection

  • C. Lopez
  • R. Nehme
  • B. Claude
  • Ph. MorinEmail author
  • J. P. Max
  • R. Pena
  • M. Pelissou
  • J. P. Ribet


Capillary electrophoresis (CE) coupled to a capacitively coupled contactless conductivity detector (C4D) was used for the determination in a single analysis of a pharmaceutical drug and its counter-ion. Dual-opposite end injection (DOI) was used to introduce hydrodynamically the analytes at each end of the capillary. No modification of the commercial apparatus is required. After applying the voltage, the cations and anions migrate from each end of the capillary in opposite directions toward the detector placed near the cathode outlet. The electrophoretic conditions were initially developed with three test drugs (chlorpheniramine maleate, metoprolol tartrate, clomiphene citrate) and then applied to two Vinca alkaloids (catharanthine sulfate, vinorelbine ditartrate). The 10 mM histidine–50 mM acetic acid buffer (pH 4.1)–methanol 90:10 (v/v) electrolyte was suitable for the analysis of these high or medium mobile anions by CE–C4D due to its low conductivity background and high buffer capacity. Finally, the CE procedure developed was successfully validated for catharanthine sulfate. The method developed herein is fast (<10 min) and accurate (repeatability on migration time < 0.6% and peak areas < 1.3%, n = 6).


Capillary electrophoresis Contactless conductivity detection Dual-opposite end injection Counter-ion Drug Vinca alkaloid 


  1. 1.
    Kumar L, Amin A, Bansal A (2008) Salt selection in drug development. Pharm Technol 3:32Google Scholar
  2. 2.
    Rocheleau MJ (2008) Analytical methods for determination of counter-ions in pharmaceutical salts. Curr Pharm Anal 4:25CrossRefGoogle Scholar
  3. 3.
    François C, Morin Ph, Dreux M (1995) Effect of the concentration of 18-crown-6 added to the electrolyte upon the separation of ammonium, alkali and alkaline-earth cations by capillary electrophoresis. J Chromatogr A 706:535CrossRefGoogle Scholar
  4. 4.
    Morin P, François C, Dreux M (1994) Capillary electrophoresis of alkali and alkaline-earth cations with imidazole or benzylamine buffers. J Liq Chrom 17:869Google Scholar
  5. 5.
    Morin P, François C, Dreux M (1994) Séparation de cations et d’anions inorganiques par électrophorèse capillaire ionique avec une détection spectrométrique UV indirecte. Analusis 22:178Google Scholar
  6. 6.
    McEvoy E, Marsh A, Altria K, Donegan S, Power J (2008) Capillary electrophoresis for pharmaceutical analysis in capillary and microchip electrophoresis and associated microtechniques. Taylor & Francis Group, New York, p 137Google Scholar
  7. 7.
    Altria KD (2011) Analysis of inorganic anions by capillary electrophoresis. LC-GC Eur 24:32Google Scholar
  8. 8.
    Timerbaev AR (2010) Inorganic species analysis by CE. Electrophoresis 31:192CrossRefGoogle Scholar
  9. 9.
    Macka M, Haddad PR (2000) Capillary electrophoresis. Encyclopedia of Separation Science, Elsevier, Amsterdam, p 3708Google Scholar
  10. 10.
    Altria KD, Wood T, Kitscha R, Roberts-McIntosh A (1995) Validation of a capillary electrophoresis method for the determination of potassium counter-ion levels in an acidic drug salt. J Chrom A 13:33Google Scholar
  11. 11.
    Williams R, Boucher RJ (2000) Analysis of potassium counter ion and inorganic cation impurities in pharmaceutical drug substance by capillary electrophoresis with conductivity detection. J Pharm Biomed Anal 22:115CrossRefGoogle Scholar
  12. 12.
    Williams R, Boucher RJ, Brown J, Scull JR, Walker J, Paolini D (1997) Analysis of acetate counter ion and inorganic impurities in pharmaceutical drug substances by capillary ion electrophoresis with conductivity detection. J Pharm Biomed Anal 16:469CrossRefGoogle Scholar
  13. 13.
    Fabre H, Blanchin MD, Bosc N (1999) Capillary electrophoresis for the determination of bromide chloride and sulfate as impurities in calcium acamprosate. Anal Chim Acta 381:29CrossRefGoogle Scholar
  14. 14.
    Ridge S, Hettiarachchi K (1998) Peptide purity and counter ion determination of bradykinin by high-performance liquid chromatography and capillary electrophoresis. J Chrom A 817:21CrossRefGoogle Scholar
  15. 15.
    Sazelova P, Kasicka V, Solinova V (2006) Determination of purity degree and counter-ion content in lecirelin by capillary zone electrophoresis and capillary isotachophoresis. J Chrom B 841:145CrossRefGoogle Scholar
  16. 16.
    Suzuki N, Ishihama Y, Kajima T, Asakawa N (1998) Quantitation of counter ion of a water-insoluble drug by nonaqueous capillary electrophoresis with indirect UV detection. J Chrom A 829:411CrossRefGoogle Scholar
  17. 17.
    Jandik P, Jones WR (1991) Optimization of detection sensitivity in the capillary electrophoresis of inorganic anions. J Chrom A 546:431CrossRefGoogle Scholar
  18. 18.
    Zemann AJ, Schnell E, Volgger D, Bonn GK (1998) Contactless conductivity detection for capillary electrophoresis. Anal Chem 70:563CrossRefGoogle Scholar
  19. 19.
    Fracassi Da Silva JA, Guzman N, Do Lago CL (1998) Contactless conductivity detection for capillary electrophoresis: Hardware improvements and optimization of the input-signal amplitude and frequency. J Chrom A 942:249CrossRefGoogle Scholar
  20. 20.
    Kubán P, Hauser PC (2008) A review of the recent achievements in capacitively coupled contactless conductivity detection. Anal Chim Acta 607:15CrossRefGoogle Scholar
  21. 21.
    Tanyanyiwa J, Hauser PC (2004) Contactless conductivity detection of selected organic ions in on-chip electrophoresis. Electrophoresis 25:3010CrossRefGoogle Scholar
  22. 22.
    Vidal D, Augelli M, Hotta G, Lopes F, Do Lago CL (2011) Determination of fluoroacetate and fluoride in blood serum by capillary zone electrophoresis using capacitively coupled contactless conductivity detection. Electrophoresis 32:896CrossRefGoogle Scholar
  23. 23.
    Nussbaumer S, Fleury-Souverain S, Bouchoud L, Rudaz S, Bonnabry P, Veuthey JL (2010) Determination of potassium, sodium, calcium and magnesium in total parenteral nutrition formulations by capillary electrophoresis with contactless conductivity detection. J Pharm Biomed Anal 53:130CrossRefGoogle Scholar
  24. 24.
    Pormsila W, Morand R, Krahenbuhl S, Hauser P (2011) Capillary electrophoresis with contactless conductivity detection for the determination of carnitine and acylcarnitines in clinical samples. J Chrom B 879:921CrossRefGoogle Scholar
  25. 25.
    Felix FS, do Lago CL, Angnes L (2011) Determination of ciclopirox olamine in pharmaceutical products by capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 32:900CrossRefGoogle Scholar
  26. 26.
    Weekley BS, Foley JP (2007) Dual-opposite-injection CZE: Theoretical aspects and application to organic and pharmaceutical compounds. Electrophoresis 28:697CrossRefGoogle Scholar
  27. 27.
    Priego-Capote F, Luque MD, de Castro MD (2004) Dual injection capillary electrophoresis: Foundations and applications. Electrophoresis 25:4074CrossRefGoogle Scholar
  28. 28.
    Kuban P, Karlberg B, Kuban P, Kuban V (2002) Simultaneous detection of inorganic and organic anions, alkali, alkaline earth and transition metal cations by capillary electrophoresis with contactless conductometric detection. Electrophoresis 23:3725CrossRefGoogle Scholar
  29. 29.
    Kuban P, Karlberg B, Kuban P, Kuban V (2002) Application of a contactless conductometric detector for the simultaneous determination of small anions and cations by capillary electrophoresis with dual-opposite end injection. J Chrom A 964:227CrossRefGoogle Scholar
  30. 30.
    Kuban P, Kuban P, Hauser PC, Kuban V (2004) A flow injection-capillary electrophoresis system with high-voltage contactless conductivity detection for automated dual opposite end injection. Electrophoresis 25:35CrossRefGoogle Scholar
  31. 31.
    Kuban P, Kuban P, Hauser PC, Kuban V (2004) Speciation of chromium (III) and chromium (VI) by capillary electrophoresis with contactless conductometric detection and dual opposite end injection. Electrophoresis 24:1397CrossRefGoogle Scholar
  32. 32.
    Unterholzner V, Macka M, Haddad PR, Zemann A (2002) Simultaneous separation of inorganic anions and cations using capillary electrophoresis with a movable contactless conductivity detector. Analyst 127:715CrossRefGoogle Scholar
  33. 33.
    Tan F, Yang BC, Guan YF (2005) Simultaneous determination of inorganic cations and anions by dual opposite ends injection coupled with capillary electrophoresis with capacitively contactless conductivity detection. Chin J Anal Chem 33:313Google Scholar
  34. 34.
    Nehme R, Lascaux A, Delepee R, Claude B, Morin Ph (2010) Capillary electrophoresis procedure for the simultaneous analysis and stoichiometry determination of a drug and its counter-ion by using dual-opposite end injection and contactless conductivity detection: application to labetalol hydrochloride. Anal Chim Acta 663:190CrossRefGoogle Scholar
  35. 35.
    Barthe L, Ribet JP, Pelissou M, Degude MJ, Fahy J, Duflos A (2002) Optimization of the separation of Vinca alkaloids by nonaqueous capillary electrophoresis. J Chromatogr A 968:41CrossRefGoogle Scholar
  36. 36.
    Toso C, Lindley C (1995) Vinorelbine: a novel vinca alkaloid. Am J Health Syst Pharm 52:1287Google Scholar
  37. 37.
    Zhou XJ, Rahmani R (1992) Preclinical and clinical pharmacology of vinca alkaloids. Drugs 44:1CrossRefGoogle Scholar
  38. 38.
    Depierre A, Lemarie E, Dabouis G, Garnier G, Jacoulet P, Dalphin JC (1991) A phase II study of navelbine (vinorelbine) in the treatment of non-small cell lung cancer. Am J Clin Oncol 14:115CrossRefGoogle Scholar
  39. 39.
    Gralla RJ, Gatzemeier U, Gebbia V, Huber R, O’Brien M, Puozzo C (2007) Oral vinorelbine in the treatment of non-small cell lung cancer: rationale and implications for patient management. Drugs 67:1403Google Scholar
  40. 40.
    De Graeve J, van Heugen JC, Zorza G, Fahy J, Puozzo C (2008) Metabolism pathway of vinorelbine (Navelbine (R)) in human: characterisation of the metabolites by HPLC-MS/MS. J Pharm Biomed Anal 47:47CrossRefGoogle Scholar
  41. 41.
    Zatkovskis Carvalho A, Da Silva JAF, Do Lago CL (2003) Determination of mono- and disaccharides by capillary electrophoresis with contactless conductivity detection. Electrophoresis 24:2138CrossRefGoogle Scholar
  42. 42.
    Zemann AJ (2001) Conductivity detection in capillary electrophoresis. Trends Anal Chem 20:346CrossRefGoogle Scholar
  43. 43.
    Drug bank: open data drug and drug target database. Accessed 5 Nov 2011
  44. 44.
    Nehme R, Perrin C, Cottet H, Blanchin M, Fabre H (2008) Influence of polyelectrolyte coating conditions on capillary coating stability and separation efficiency in capillary electrophoresis. Electrophoresis 29:3013CrossRefGoogle Scholar
  45. 45.
    Nehme R, Perrin C, Cottet H, Blanchin M, Fabre H (2009) Influence of polyelectrolyte capillary coating conditions on protein analysis in CE. Electrophoresis 30:1888CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Lopez
    • 1
  • R. Nehme
    • 1
  • B. Claude
    • 1
  • Ph. Morin
    • 1
    Email author
  • J. P. Max
    • 2
  • R. Pena
    • 2
  • M. Pelissou
    • 2
  • J. P. Ribet
    • 2
  1. 1.Institut de Chimie Organique et AnalytiqueUniversité d’Orléans, CNRSOrléansFrance
  2. 2.Département de Chimie AnalytiqueInstitut de Recherche Pierre FabreCastresFrance

Personalised recommendations