Skip to main content
Log in

Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Combined with Low Solvent Consumption for Determination of Polycyclic Aromatic Hydrocarbons in Seawater by GC–MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Ultrasound-assisted dispersive liquid–liquid microextraction (USA-DLLME) with low solvent consumption was demonstrated for gas chromatography-mass spectrometry (GC–MS) determination of 16 typical polycyclic aromatic hydrocarbons (PAHs) in seawater samples. Factors affecting the extraction process, such as extraction and dispersive solvent, phase ratio, temperature, extraction and centrifugation time, were investigated thoroughly and optimized. The linear range was 20–2,000 ng L−1 except for acenaphthylene (Acy) at 10–2,000 ng L−1 and phenanthrene (Phe), fluoranthene (Flu) and pyrene (Py) all at 5–2,000 ng L−1. Enrichment factors (EFs) ranging from 722 to 8,133 were obtained, achieving limits of detection at 1.0–10.0 ng L−1. The method attained good precision (relative standard deviation, RSD) from 3.4 to 14.2% for spiked 50 ng L−1 individual PAHs standards. Method recoveries were in the range 87–124% and 70–127% for spiked samples from simulated seawater and beach seawater, respectively. The proposed USA-DLLME helped to obtain about 1.1–10 times higher EFs in a minimum amount of solvent and in less time than traditional DLLME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107. doi:10.1017/S0376892902000061

    Article  Google Scholar 

  2. Nemr AE, Abd-Allah AMA (2003) Chemosphere 52:1711–1716. doi:10.1016/S0045-6535(03)00300-X

    Article  Google Scholar 

  3. Yan J, Wang L, Fu PP, Yu H (2004) Mutat Res 557(1):99–108. doi:10.1016/j.mrgentox.2003.10.004

    CAS  Google Scholar 

  4. Zander M (1986) Book review: spectral atlas of polycyclic aromatic compounds. In: Karcher W, Fordham RJ, Dubois JJ, Claude PGJM, Lighthart JAM (eds) Angewandte Chemie International Edition in English, 25:379–380. 10.1002/anie.198603791

  5. Kursheva AV, Litvinenko IV, Petrova VI, Galishev MA (2009) Oceanology 49:655–662. doi:10.1134/S0001437009050063

    Article  Google Scholar 

  6. Puig D, Barcelo D (1996) Trends Anal Chem 15:362–375. doi:10.1016/0165-9936(96)00057-X

    CAS  Google Scholar 

  7. Zhao XN, Fu LY, Hu J, Li JW, Wang HL, Huang CJ, Wang XD (2009) Chromatographia 69:1385–1389. doi:10.1365/s10337-009-1099-7

    Article  CAS  Google Scholar 

  8. Yasuhara A, Shiraishi H, Nishikawa M, Yamamoto T, Uehiro T, Nakasugi O, Okumura T, Kenmotsu K, Fukui H, Nagase M, Ono Y, Kawagoshi Y, Baba K, Noma Y (1997) J Chromatogr A 774:321–332. doi:10.1016/S0021-9673(97)00078-2

    Article  Google Scholar 

  9. Murillo-Tovar MA, Amador-Munoz O, Villalobos-Pietrini R, Marriott PJ (2010) Chromatographia 72:913–921. doi:10.1365/s10337-010-1738-z0009-5893/10/11

    Article  CAS  Google Scholar 

  10. Ma JP, Xiao RH, Li JH, Yu JB, Zhang YQ, Chen LX (2010) J Chromatogr A 1217:5462–5469. doi:10.1016/j.chroma.2010.06.060

    Article  CAS  Google Scholar 

  11. Nicholson BC, Bursill DB, Couche DJ (1985) J Chromatogr A 325:221–230. doi:10.1016/S0021-9673(00)96022-9

    Article  CAS  Google Scholar 

  12. Bagheri H, Salemi A (2004) Chromatographia 59:501–505. doi:10.1365/s10337-004-0226-80009-5893/04/04

    CAS  Google Scholar 

  13. Hutchinson JP, Setkova L, Pawliszyn J (2007) J Chromatogr A 1149:127–137. doi:10.1016/j.chroma.2007.02.117

    Article  CAS  Google Scholar 

  14. Jeannot MA, Cantwell FF (1996) Anal Chem 68:2236–2240. doi:10.1021/ac960042z

    Article  CAS  Google Scholar 

  15. Tankeviciute A, Kazlauskas R, Vickackaite V (2001) Analyst 126:1674–1677. doi:10.1039/B103493F

    Article  CAS  Google Scholar 

  16. Pedersen-Bjergaard S, Rasmussen KE (2004) Trends Anal Chem 23:1–10. doi:10.1016/j.jchromb.2004.08.034

    Article  Google Scholar 

  17. Jiang XM, Lee HK (2004) Anal Chem 76:5591–5596. doi:10.1021/ac040069f

    Article  CAS  Google Scholar 

  18. Wu JM, Ee KH, Lee HK (2005) J Chromatogr A 1082:121–127. doi:10.1016/j.chroma.2005.05.077

    Article  CAS  Google Scholar 

  19. Li Y, Zhang T, Liang P (2005) Anal Chim Acta 536:245–249. doi:10.1016/j.aca.2004.12.033

    Article  CAS  Google Scholar 

  20. Jiang XM, Basheer C, Zhang J, Lee HK (2005) J Chromatogr A 1087:289–294. doi:10.1016/j.chroma.2005.06.010

    Article  CAS  Google Scholar 

  21. Ahmadi F, Assadi Y, Hosseini MRM, Rezaee M (2006) J Chromatogr A 1101:307–312. doi:10.1016/j.chroma.2005.11.017

    Article  CAS  Google Scholar 

  22. Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9. doi:10.1016/j.chroma.2006.03.007

    Article  CAS  Google Scholar 

  23. Farajzadeh MA, Bahram M, Jafary F, Bamorowat M (2011) Chromatographia 73:393–401. doi:10.1007/s10337-010-1895-0

    Article  CAS  Google Scholar 

  24. Xu L, Basheer C, Lee HK (2007) J Chromatogr A 1152:184–192. doi:10.1016/j.chroma.2006.10.073

    Article  CAS  Google Scholar 

  25. Xu H, Ding ZQ, Lv LL, Song DD, Feng YQ (2009) Anal Chim Acta 636:28–33. doi:10.1016/j.aca.2009.01.028

    Article  CAS  Google Scholar 

  26. Ozcan S, Tor A, Aydin ME (2010) Anal Chim Acta 665(2):193–199. doi:10.1016/j.aca.2010.03.047

    Article  CAS  Google Scholar 

  27. Saleh A, Yamini Y, Faraji M, Rezaee M, Ghambarian M (2009) J Chromatogr A 1216(39):6673–6679. doi:10.1016/j.chroma.2009.08.001

    Article  CAS  Google Scholar 

  28. Mackay D, Shiu WY, Ma KC, Lee SC (2006) Handbook of physical–chemical properties and environmental fate for organic chemicals, 2nd edn. Lewis, Boca Raton

  29. Crunkilton RL, de Vita WM (1997) Chemosphere 35(7):1447–1463. doi:10.1016/S0045-6535(97)00217-8

    Article  CAS  Google Scholar 

  30. Manoli E, Samara C (1999) Trends Anal Chem 18:417–428. doi:10.1016/S0165-9936(99)00111-9

    Article  CAS  Google Scholar 

  31. Zhang ZB, Liu LS (1989) Marine physical chemistry. Science, Beijing

    Google Scholar 

  32. Fontana AR, Wuilloud RG, Martínez LD, Altamirano JC (2009) J Chromatogr A 1216:147–153. doi:10.1016/j.chroma.2008.11.034

    Article  CAS  Google Scholar 

  33. Regueiro J, Llompart M, Psillakis E, Monteagudo JCG, Jares CG (2009) Talanta 79:1387–1397. doi:10.1016/j.talanta.2009.06.015

    Article  CAS  Google Scholar 

  34. Farajzadeh MA, Bahram M, Jönsson JÅ (2007) Anal Chim Acta 591:69–79. doi:10.1016/j.aca.2007.03.040

    Article  CAS  Google Scholar 

  35. Farajzadeh MA, Bahram M, Mehr BG, Jönsson JÅ (2008) Talanta 75:832–840. doi:10.1016/j.talanta.2007.12.035

    Article  CAS  Google Scholar 

  36. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) J Chromatogr A 1216:885–891. doi:10.1016/j.chroma.2008.11.076

    Article  CAS  Google Scholar 

  37. Xiong CM, Ruan JL, Cai YL, Tang Y (2009) J Pharm Biomed Anal 49(2):572–578. doi:10.1016/j.jpba.2008.11.036

    Article  CAS  Google Scholar 

  38. Kuramochi H, Maeda K, Kawamoto K (2007) Chemosphere 67:1858–1865. doi:10.1016/j.chemosphere.2006.05.076

    Article  CAS  Google Scholar 

  39. Berijani S, Assadi Y, Anbia M, Milani HMR, Aghaee E (2006) J Chromatogr A 1123:1–9. doi:10.1016/j.chroma.2006.05.010

    Article  CAS  Google Scholar 

  40. Luque de Castro MD, Priego-Capote F (2007) Talanta 72:321–334. doi:10.1016/j.talanta.2006.11.013

    Article  CAS  Google Scholar 

  41. Luque de Castro MD, Priego-Capote F (2006) Analytical applications of ultrasound. Elsevier, Amsterdam

    Google Scholar 

  42. Wu YL, Dai LP, Cheng J, Guo F, Li YK (2010) Chromatographia 72:695–699. doi:10.1365/s10337-010-1719-20009-5893/10/10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology of Shandong Province of China (2008GG20005005, 2010GSF10222), the Natural Science Foundation of China (20907039), the Natural Science Foundation of Shandong Province of China (Y2007B38), Yantai Research and Development Program (2007323) and the 100 Talents Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Li, J., Liao, C. et al. Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Combined with Low Solvent Consumption for Determination of Polycyclic Aromatic Hydrocarbons in Seawater by GC–MS. Chromatographia 74, 89–98 (2011). https://doi.org/10.1007/s10337-011-2048-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2048-9

Keywords

Navigation