Skip to main content
Log in

Preparation and Evaluation of Long Chain Alkyl Methacrylate Monoliths for Capillary Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This work describes the fabrication of long chain alkyl methacrylate monolithic materials for use as stationary phases in capillary liquid chromatography. After capillary inner wall surface activation with 3-(trimethoxysilyl)propyl methacrylate, monoliths were formed by copolymerization of either lauryl or stearyl methacrylate (LMA or SMA) with ethylene dimethacrylate (EDMA) as crosslinker, in the presence of azobisisobutyronitrile (AIBN) as initiator and a mixture of porogenic solvents including water, 1-propanol and 1,4-butanediol. The composition of the polymerization mixture was changed in terms of monomer, crosslinker and porogen ratio composition, in order to compare the influence of these parameters. The monoliths were prepared in 320 μm i.d. and 200 mm length capillaries. The column morphology was characterized by optical microscopy and scanning electron microscopy (SEM). Total porosity and permeability of each column were calculated using uracil as unretained material by measuring the pressure drop across the columns as a function of linear velocity. The microglobule average size for each column was also determined using Hagen–Poiseuille equation and compared with the SEM images. As expected, a decrease of the porogen to monomer ratio corresponded to smaller microglobules and a lower total porosity. The columns were then chromatographically evaluated; good results were obtained when these capillaries were used to separate mixtures of phenols, aromatics and drug compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gu C, He J, Jia J, Fang N, Simmons R, Shamsi SA (2010) Surfactant-bound monolithic columns for separation of proteins in capillary high performance liquid chromatography. J Chromatogr A 1217:530

    Article  CAS  Google Scholar 

  2. Song Y, Liu YM (2008) Quantitation of cardioexcitatory Asn-D-Trp-Phe-NH2 diastereomers in Aplysia’s central nervous system by nanoscale liquid chromatography-tandem mass spectrometry. J Mass Spectrom 43:1285

    Article  CAS  Google Scholar 

  3. Tastet L, Schaumloffel D, Bouyssiere B, Lobinski R (2008) Identification of selenium-containing proteins in selenium-rich yeast aqueous extract by 2D gel electrophoresis, nanoHPLC–ICP MS and nanoHPLC–ESI MS/MS. Talanta 75:1140

    Article  CAS  Google Scholar 

  4. Bailón-Pérez MI, García-Campaña AM, Del Olmo-Iruela M, Gámiz-Gracia L, Cruces-Blanco C (2009) Trace determination of 10 β-lactam antibiotics in environmental and food samples by capillary liquid chromatography. J Chromatogr A 1216:8355

    Article  Google Scholar 

  5. Petrovic M, Farré M, De Alda ML, Perez S, Postigo C, Köck M, Radjenovic J, Gros M, Barcelo M (2010) Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. J Chromatogr A 1217:4004

    Article  CAS  Google Scholar 

  6. Qian K, Tang T, Shi T, Wang F, Li J, Cao Y (2009) Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3, 5-dinitrobenzotrifluoride. Anal Chim Acta 635:222

    Article  CAS  Google Scholar 

  7. Issaq HJ, Chan KC, Blonder J, Ye X, Veenstra TD (2009) Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography. J Chromatogr A 1216:1825

    Article  CAS  Google Scholar 

  8. D’Orazio G, Cifuentes A, Fanali S (2008) Chiral nano-liquid chromatography–mass spectrometry applied to amino acids analysis for orange juice profiling. Food Chem 108:1114

    Article  Google Scholar 

  9. Dakna M, He Z, Yu WC, Mischak H, Kolch W (2009) Technical, bioinformatical and statistical aspects of liquid chromatography–mass spectrometry (LC–MS) and capillary electrophoresis–mass spectrometry (CE–MS) based clinical proteomics: a critical assessment. J Chromatogr B 877:1250

    Article  CAS  Google Scholar 

  10. Hjertén S, Liao JL, Zhang R (1989) High-performance liquid chromatography on continuous polymer beds. J Chromatogr 473:273

    Article  Google Scholar 

  11. Svec F, Frechet JMJ (1992) Continuous rods of macroporous polymer as high performance liquid chromatography separation media. Anal Chem 64:820

    Article  CAS  Google Scholar 

  12. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem 68:3498

    Article  CAS  Google Scholar 

  13. Coufal P, Čihák M, Suchánková J, Tesařová E, Bosáková Z, Štulík K (2002) Methacrylate monolithic columns of 320 μm I.D. for capillary liquid chromatography. J Chromatogr A 946:99

    Article  CAS  Google Scholar 

  14. Holdšvendová P, Coufal P, Suchánková J, Tesaøová E, Bosáková Z (2003) Methacrylate monolithic columns for capillary liquid chromatography polymerized using ammonium peroxodisulfate as initiator. J Sep Sci 26:1623

    Article  Google Scholar 

  15. Grafnetter J, Coufal P, Tesařová E, Suchánková J, Bosáková Z, Ševčík J (2004) Optimisation of binary porogen solvent composition for preparation of butyl methacrylate monoliths in capillary liquid chromatography. J Chromatogr A 1049:43

    CAS  Google Scholar 

  16. Buszewski B, Szumski M (2004) Study of bed homogenity of methacrylate-based monolithic columns for micro-HPLC and CEC. Chromatographia 60:s261

    Article  CAS  Google Scholar 

  17. Yang C, Ikegami T, Hara T, Tanaka N (2006) Improved endcapping method of monolithic silica columns. J Chromatogr A 1130:175

    Article  CAS  Google Scholar 

  18. Jiang Z, Smith NW, Ferguson PD, Taylor MR (2007) Preparation and characterization of long alkyl chain methacrylate-based monolithic column for capillary chromatography. J Biochem Biophys Methods 70:39

    Article  CAS  Google Scholar 

  19. Svec F, Frechet JMJ (1995) Molded rods of polymer for preparative separations of biological products. Biotechnol Bioeng 48:476

    Article  CAS  Google Scholar 

  20. Svec F, Frechet JMJ (1995) Kinetic control of pore formation in macroporous polymers. The formation of “molded” porous materials with high flow characteristics for separation or catalysis. Chem Mater 7:707

    Article  CAS  Google Scholar 

  21. Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902

    Article  CAS  Google Scholar 

  22. Vazquez M, Paull B (2010) Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices. Anal Chim Acta 668:100

    Article  CAS  Google Scholar 

  23. Moravcova D, Jandera P, Urban J, Planeta J (2003) Characterization of polymer monolithic stationary phases for capillary HPLC. J Sep Sci 26:1005

    Article  CAS  Google Scholar 

  24. Shu X, Chen L, Yang B, Guan Y (2004) Preparation and characterization of long methacrylate monolithic column for capillary liquid chromatography. J Chromatogr A 1052:205

    Article  CAS  Google Scholar 

  25. Bedair M, Rassi ZE (2002) Capillary electrochromatography with monolithic stationary phases: 1. Preparation of sulfonated stearyl acrylate monoliths and their electrochromatographic characterization with neutral and charged solutes. Electrophoresis 23:2938

    Article  CAS  Google Scholar 

  26. Kornyšova O, Maruška A, Owens PK, Erickson M (2005) Non-particulate (continuous bed or monolithic) acrylate-based capillary columns for reversed-phase liquid chromatography and electrochromatography. J Chromatogr A 1071:171

    Article  Google Scholar 

  27. Ueki Y, Umemura T, Iwashita Y, Odake T, Haraguchi H, Tsunoda K (2006) Preparation of low flow-resistant methacrylate-based monolithic stationary phases of different hydrophobicity and the application to rapid reversed phase liquid chromatographic separation of alkyl benzenes at high flow rate and elevated temperature. J Chromatogr A 1106:106

    Article  CAS  Google Scholar 

  28. Schlemmer B, Bandari R, Rosenkranz L, Buchmeiser MR (2009) Electron beam triggered, free radical polymerization-derived monolithic capillary columns for high-performance liquid chromatography. J Chromatogr A 1216:2664

    Article  CAS  Google Scholar 

  29. Jiang T, Jiskra J, Claessens HA, Cramers CA (2001) Preparation and characterization of monolithic polymer columns for capillary electrochromatography. J Chromatogr A 923:215

    Article  CAS  Google Scholar 

  30. Enlund AM, Ericson C, Hjertén S, Westerlund D (2001) Capillary electrochromatography of hydrophobic amines on continuous beds. Electrophoresis 22:511

    Article  CAS  Google Scholar 

  31. Li Y, Zhang J, Xiang R, Yang Y, Horváth C (2004) Preparation and characterization of alkylated polymethacrylate monolithic columns for micro-HPLC of proteins. J Sep Sci 27:1467

    Article  CAS  Google Scholar 

  32. Horváth Cs, Lin HJ (1976) Movement and band spreading of unsorbed solutes in liquid chromatography. J Chromatogr 126:401

    Article  Google Scholar 

  33. Bear J (1988) In: Dynamics of fluids in porous media. Dover Publications, New York, p 113

    Google Scholar 

  34. Unger KK (1979) In: porous silica, its properties and use as support in columns liquid chromatography. Elsevier, Amsterdam, p 171

    Google Scholar 

  35. Meyers VM (2005) Practical high-performance liquid chromatography. Wiley, New Jersey

    Google Scholar 

  36. Zabka M, Minceva M, Rodrigues AE (2007) Experimental characterization and modelling of analytical monolithic column. J Biochem Biophys Methods 70:95

    Article  CAS  Google Scholar 

  37. Svec F, Frechet JMJ (1999) Molded rigid monolithic porous polymers: an inexpensive, efficient, and versatile alternative to porous beads for the design of materials with high flow characteristics for numerous applications. Ind Eng Chem Res 38:34

    Article  CAS  Google Scholar 

  38. Pistos C, Stewart JT (2004) Assay for the simultaneous determination of acetaminophen–caffeine–butalbital in human serum using a monolithic column. J Pharma Biomed Anal 36:737

    Article  CAS  Google Scholar 

  39. Jiang Z, Reilly J, Everatt B, Smith NW (2009) Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography. J Chromatogr A 1216:2439

    Article  CAS  Google Scholar 

  40. Gusev I, Huang X, Cs Horvath (1999) Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A 855:273

    Article  CAS  Google Scholar 

  41. Grulke EA (1999) Solubility parameters values. In: Brandrup J, Immergent EH, Grulke EA (eds) Polymer handbook, vol 2, 4th edn. Wiley Interscience, New York

    Google Scholar 

  42. Cong L, Huang B, Chen Q, Lu B, Zhang J, Ren Y (2006) Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry. Anal Chim Acta 569:157

    Article  CAS  Google Scholar 

  43. Lubbad SH, Buchmeiser MR (2010) Fast separation of low molecular weight analytes on structurally optimized polymeric capillary monoliths. J Chromatogr A 1217:3223

    Article  CAS  Google Scholar 

  44. Lubbad SH MR, Buchmeiser MR (2009) Highly cross-linked polymeric capillary monoliths for the separation of low, medium, and high molecular weight analytes. J Sep Sci 32:2521

    Article  Google Scholar 

  45. Zhang YP, Deng PH, Chen N, Liu P, Yang ZJ (2010) Preparation and evaluation of tandem stationary phases for μ-HPLC and capillary electrochromatography. Microchim Acta 170:1

    Article  CAS  Google Scholar 

  46. Gritti F, Leonardis I, Shock D, Stevenson P, Shalliker A, Guiochon G (2010) Performance of columns packed with the new shell particles, Kinetex-C18. J Chromatogr A 1217:1589

    Article  CAS  Google Scholar 

  47. Fekete S, Fekete J, Ganzler K (2009) Characterization of new types of stationary phases for fast liquid chromatographic applications. J Pharma Biomed Anal 50:703

    Article  CAS  Google Scholar 

  48. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the Research Group No RGP-VPP-043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yacine Badjah-Hadj-Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ALOthman, Z.A., Aqel, A., Al Abdelmoneim, H.A. et al. Preparation and Evaluation of Long Chain Alkyl Methacrylate Monoliths for Capillary Chromatography. Chromatographia 74, 1–8 (2011). https://doi.org/10.1007/s10337-011-2047-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2047-x

Keywords

Navigation