Skip to main content
Log in

Binding Interaction between Nicotine and Human Serum Albumin by High Performance Affinity Chromatography

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Several reports have confirmed that nicotine can bind to serum albumin, but the exact strength, location and number of the binding sites used during this process remain unclear. In this work, frontal analysis investigation showed that the binding isotherm of nicotine to human serum albumin (HSA) best fitted the Langmuir model, suggesting a single kind of binding site for nicotine on HSA. Competitive studies with probe compounds revealed that nicotine is in direct competition with l-tryptophan, indicated that nicotine binds to Sudlow site II (i.e., the indole–benzodiazepine site of HSA). No interactions were seen between nicotine and S-warfarin, tamoxifen or digitoxin. The association constant of nicotine binding to HSA was (8.60 ± 2.26) × 104 M−1 at pH 7.2 and 37 °C. The value of ∆G for this reaction was −42.75 kJ mol−1 at 37 °C, with an associated change in enthalpy (∆H) of 6.7 kJ mol−1 and a change in entropy (∆S) of 116.4 J mol-1 K−1, demonstrating that the interaction was driven mainly by entropy, and that hydrophobic interaction was the main power behind the binding process. These results will help provide a more detailed description of how nicotine is transported in the blood and how it may interact with other drugs in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Schevelbein H (1982) Pharmacol Ther 18:233–248. doi:10.1016/0163-7258(82)90068-7

    Article  Google Scholar 

  2. Brunneman KD, Prokopczyk B, Djordjevic MV, Hoffman D (1996) Crit Rev Toxicol 26:121–137. doi:10.3109/10408449609017926

    Article  Google Scholar 

  3. Heisheman SC, Taylor RC, Henningfield JE (1994)Exp Clin Pharmacol 2:345–395. doi:10.1111/j.1360-0443.1997.tb02863.x

    Google Scholar 

  4. Kragh-Hansen U (1981) Pharmacol Rev 33:17–53

    CAS  Google Scholar 

  5. Liu TQ, Guo R (2008) J Surfact Deterg 11:33–39. doi:10.1007/s11743-007-1051-5

    Article  CAS  Google Scholar 

  6. Gokara M, Sudhamalla B, Amooru DG, Subramanyam R (2010) PloS One 5:e8834. doi:10.1371/journal.pone.0008834

    Article  Google Scholar 

  7. Naik PN, Chimatadar SA, Nandibewoor ST (2010) Biopharm Drug Dispos 31:120–128. doi:10.1002/bdd.696

    CAS  Google Scholar 

  8. Tian JN, Liu XH, Zhao YC, Zhao SL (2007) Luminescence 22:446–454. doi:10.1002/bio.983

    Article  CAS  Google Scholar 

  9. Fehske KJ, Müller WE, Wollert U (1981) Biochem Pharmacol 30:687–692

    Article  CAS  Google Scholar 

  10. Bertucci C, Domenici E (2002) Curr Med Chem 9:1463–1481. doi:10.2174/0929867023369673

    CAS  Google Scholar 

  11. Brors O, Fremstad D, Poulsson C (1993) Pharmacol Toxicol 72:310–313. doi:10.1111/j.1600-0773.1993.tb01656.x

    Article  CAS  Google Scholar 

  12. Kragh-Hansen U, Chuang VTG, Otagiri M (2002) Biol Pharm Bull 25:695–704. doi:10.1248/bpb.25.695

    Article  CAS  Google Scholar 

  13. Abuin E, Calderón C, Lissi E (2008) J Photochem Photobiol A Chem 195:295–300. doi:10.1016/j.jphotochem.2007.10.015

    Article  CAS  Google Scholar 

  14. Takamura N, Maruyama T, Ahmed S, Suenaga A, Otagiri M (1997) Pharm Res 14:522–526. doi:10.1023/A:1012168020545

    Article  CAS  Google Scholar 

  15. Ding F, Liu W, Zhang X, Wu LJ, Zhang L, Sun Y (2010) Spectrochim Acta A Mol Biomol Spectrosc 75:1088–1094. doi:10.1016/j.saa.2009.12.062

    Article  Google Scholar 

  16. Rynda-Lemiesz L, Wiglusz K (2010) J Pharm Biomed 52:300–304. doi:10.1016/j.saa.2009.12.062

    Article  Google Scholar 

  17. Pan T, Xiao ZD, Huang PM (2009) Luminescence 129:741–745. doi:10.1016/j.jlumin.2009.02.006

    Article  CAS  Google Scholar 

  18. Kim HS, Wainer IW (2008) J Chromatogr B 870:22–26. doi:10.1016/j.jchromb.2008.05.029

    Article  CAS  Google Scholar 

  19. Kim HS, Hage DS (2005) J Chromatogr B 816:57–66. doi:10.1016/j.jchromb.2004.11.006

    Article  CAS  Google Scholar 

  20. Chen J, Kong XR, Shen XC, Liang H (2005) Spectrosc Spectra Anal 25:1652–1657. doi:cnki:ISSN:1000-0593.0.2005-10-033

    CAS  Google Scholar 

  21. Yoo MJ, Smith QR, Hage DS (2009) J Chromatogr B 877:1149–1154. doi:10.1016/j.jchromb.2009.02.070

    Article  CAS  Google Scholar 

  22. Hage DS (2002) J Chromatogr B 768:3–30. doi:10.1016/S0378-4347(01)00482-0

    Article  CAS  Google Scholar 

  23. Ross PD, Subramanian S (1981) Biochemistry 20:3096–3102. doi:10.1021/bi00514a017

    Article  CAS  Google Scholar 

  24. Liu QH, Ba CD, Chen DY (2008) J Pharm Biomed 47:888–891. doi:10.1016/j.jpba.2008.03.007

    Article  Google Scholar 

  25. Hage DS, Austin J (2000) J. Chromatogr B 739:39–54. doi:10.1016/S0378-4347(99)00445-4

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate the financial support of Science and Technology project (No. Z08041), from Xian Shiyou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunyu Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, X., Nan, Y. & Zhang, Q. Binding Interaction between Nicotine and Human Serum Albumin by High Performance Affinity Chromatography. Chromatographia 74, 127–131 (2011). https://doi.org/10.1007/s10337-011-2043-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2043-1

Keywords

Navigation