Skip to main content
Log in

High-Efficiency Liquid Chromatography Using Sub-2 μm Columns at Elevated Temperature for the Analysis of Sulfonamides in Wastewater

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Efficiency in HPLC can be enhanced by increasing the column length and/or decreasing the particle size. The use of high temperature in HPLC has emerged as a valuable tool to overcome the increase in column backpressure when using small packing particles, as it allows for reduction in mobile phase viscosity. In this study, high plate count was obtained by coupling sub-2 μm columns at elevated temperature to reduce the viscosity of the mobile phase, thus reducing the column backpressure. At 80 °C, up to three columns of 15 cm × 4.6 mm I.D. packed with 1.8 μm particles could be coupled generating ~84,000 theoretical plates for the last eluting compound. The number of theoretical plates was increased on average by a factor of ~3.6 when three columns were coupled at 80 °C compared with one column at 30 °C. The relationships between separation efficiency and column length were examined using Van Deemter plots constructed at 30 °C and 80 °C for different column lengths. The advantages of using coupled columns in combination with elevated temperature for the environmental analysis were illustrated using test mixtures comprised of eight sulfonamides separated on one column at 30 °C and three coupled columns at 80 °C by isocratic elution. Sample clean up was carried out by employing solid-phase extraction (SPE) using Oasis HLB cartridges. The method developed was validated based on parameters such as linearity, precision, accuracy, detection and quantification limits. Recoveries generally ranged from 71.7 to 99% (with the exception of sulfanilamide), with standard deviations not higher than 4.7%. The detection limits of the method ranged from 0.6–2 μg L−1, while limits of quantification were in the range 2–6.7 μg L−1 with UV detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Skoog DA, Howler FJ, Nieman TA (1998) Principles of instrumental analysis, 5th edn. Brooks/Cole Florence, USA

    Google Scholar 

  2. Nguyen DT, Guillarme D, Rudaz S, Veuthey J (2006) J Sep Sci 29:1836–1848

    Article  CAS  Google Scholar 

  3. Vanhoenacker G, Sandra P (2006) J Sep Sci 29:1822–1835

    Article  CAS  Google Scholar 

  4. Smith RM, Burgess RJ (1997) J Chromatogr A 785:49–55

    Article  CAS  Google Scholar 

  5. Giegold S, Teutenberg T, Tuerk J, Kiffmeyer T, Wenclawiak B (2008) J Sep Sci 31:3497–3502

    Article  CAS  Google Scholar 

  6. Sanagi MM, See HH, Ibrahim WAW, Abu Naim A (2004) J Chromatogr A 1059:95–101

    Article  CAS  Google Scholar 

  7. Chen H, Horvath C (1995) J Chromatogr A 705:3–20

    Article  CAS  Google Scholar 

  8. Greibrokk T, Andersen T (2001) J Sep Sci 24:899–909

    Article  CAS  Google Scholar 

  9. Wu N, Clausen A, Wright L, Vogel K, Bernardoni F (2008) Am Pharm Rev 11:24, 26, 28, 31–33

    Google Scholar 

  10. Nguyen DT, Guillarme D, Heinisch S, Barrioulet M, Rocca J, Rudaz S, Veuthey J (2007) J Chromatogr A 1167:76–84

    Article  CAS  Google Scholar 

  11. Wren SAC (2005) J Pharm Biomed Anal 38:337–343

    Article  CAS  Google Scholar 

  12. Guillarme D, Grata E, Glauser G, Wolfender J, Veuthey J, Rudaz S (2009) J Chromatogr A 1216:3232–3243

    Article  CAS  Google Scholar 

  13. Lestremau F, Cooper A, Szucs R, David F, Sandra P (2006) J Chromatogr A 1109:191–196

    Article  CAS  Google Scholar 

  14. Reed GD, Loscombe CR (1983) J High Resolut Chromatogr 6:106–107

    Article  CAS  Google Scholar 

  15. Dewaele C, Verzele M (1980) J High Resolut Chromatogr 3:273–276

    Article  CAS  Google Scholar 

  16. Herrero M, Cacciola F, Donato P, Giuffrida D, Dugo G, Dugo P, Mondello L (2008) J Chromatogr A 1188:208–215

    Article  CAS  Google Scholar 

  17. Sandra P, Vanhoenacker G (2007) J Sep Sci 30:241–244

    Article  CAS  Google Scholar 

  18. Bamba T, Fukusaki E, Nakazawa Y, Kobayashi A (2004) J Sep Sci 27:293–296

    Article  CAS  Google Scholar 

  19. Bones J, Duffy C, Macka M, Paull B (2008) Analyst 133:180–188

    Article  CAS  Google Scholar 

  20. Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Nunez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, Tanaka N (2008) Anal Chem 80:8741–8750

    Article  CAS  Google Scholar 

  21. Dolan JW (2010) LCGC North Am 28:114, 116, 118, 120

  22. McNeff CV, Yan B, Stoll DR, Henry RA (2007) J Sep Sci 30:1672–1685

    Article  CAS  Google Scholar 

  23. Broeckhoven K, Desmet G (2007) J Chromatogr A 1172:25–39

    Article  CAS  Google Scholar 

  24. Villiers A, Lestremau F, Szucs R, Gelebart S, David F, Sandra P (2006) J Chromatogr A 1127:60–69

    Article  Google Scholar 

  25. Lindsey ME, Meyer M, Thurman EM (2001) Anal Chem 73:4640–4646

    Article  CAS  Google Scholar 

  26. Lindberg R, Jarnheimer P, Olsen B, Johansson M, Tysklind M (2004) Chemosphere 57:1479–1488

    Article  CAS  Google Scholar 

  27. Renew JE, Huang C (2004) J Chromatogr A 1042:113–121

    Article  CAS  Google Scholar 

  28. Yang S, Cha J, Carlson K (2004) Rapid Commun Mass Spectrom 18:2131–2145

    Article  CAS  Google Scholar 

  29. Babic S, Asperger D, Mutavdzic D, Horvat AJM, Kastelan-Macan M (2006) Talanta 70:732–738

    Article  CAS  Google Scholar 

  30. Malintan NT, Mohd MA (2006) J Chromatogr A 1127:154–160

    Article  CAS  Google Scholar 

  31. Heinisch S, Rocca J (2009) J Chromatogr A 1216:642–658

    Article  CAS  Google Scholar 

  32. Lestremau F, de VA, Lynen F, Cooper A, Szucs R, Sandra P (2007) J Chromatogr A 1138:120–131

  33. Teutenberg T (2009) Anal Chim Acta 643:1–12

    Article  CAS  Google Scholar 

  34. Gros M, Petrovic M, Barcelo D (2006) Anal Bioanal Chem 386:941–952

    Article  CAS  Google Scholar 

  35. Quintana JB, Reemtsma T (2004) Rapid Commun Mass Spectrom 18:765–774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Egyptian government is gratefully acknowledged for the financial support to H.S. The authors would like to thank Suez Canal University, Egypt. Thanks to the Natural Sciences and Engineering Research Council (NSERC) of Canada for providing additional financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Górecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaaban, H., Górecki, T. High-Efficiency Liquid Chromatography Using Sub-2 μm Columns at Elevated Temperature for the Analysis of Sulfonamides in Wastewater. Chromatographia 74, 9–17 (2011). https://doi.org/10.1007/s10337-011-2038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2038-y

Keywords

Navigation