Skip to main content
Log in

Optimization of Artificial Neural Networks for Modeling of Atorvastatin and Its Impurities Retention in Micellar Liquid Chromatography

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Artificial Neural Networks (ANNs) present a powerful tool for the modeling of chromatographic retention. In this paper, the main objective was to use ANNs as a tool in modeling of atorvastatin and its impurities’ retention in a micellar liquid chromatography (MLC) protocol. Factors referred to MLC were evaluated through 30 experiments defined by the Central Composite Design. In this manner, 5–x–3 topology as a starting point for ANNs’ optimization was defined too. In the next step, in order to set the network with the best performance, network optimization was done. In the first part, the number of nodes in the hidden layer and the number of experimental data points in training set were simultaneously varied, and their importance was estimated with suitable statistical parameters. Furthermore, a series of training algorithms was applied to the current network. The Back Propagation, Conjugate Gradient-descent, Quick Propagation, Quasi-Newton, and Delta-bar-Delta algorithms were used to obtain the optimal network. Finally, the predictive ability of the optimized neural network was confirmed through several statistical tests. The obtained network showed high ability to predict chromatographic retention of atorvastatin and its impurities in MLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Jančić-Stojanović B, Ivanović D, Malenović A, Medenica M (2009) Talanta 78:107–112

    Article  Google Scholar 

  2. Jančić B, Medenica M, Ivanović D, Janković S, Malenović A (2008) J Chromatogr A 1189:366–373

    Article  Google Scholar 

  3. Jančić B, Medenica M, Ivanović D, Malenović A, Popović I (2008) Chromatographia 67:S123–S127

    Article  Google Scholar 

  4. Hameda AB, Elosta S, Havel J (2005) J Chromatogr A 1084:7–12

    Article  Google Scholar 

  5. Novotná K, Havliš J, Havel J (2005) J Chromatogr A 1096:50–57

    Article  Google Scholar 

  6. Marengo E, Gianotti V, Angioi S, Gennaro MC (2004) J Chromatogr A 1029:57–65

    Article  CAS  Google Scholar 

  7. Tran ATK, Hyne RV, Pablo F, Day WR, Doble P (2007) Talanta 71:1268–1275

    Article  CAS  Google Scholar 

  8. Havel J, Madden JE, Haddad PR (1999) Chromatographia 49:481–488

    Article  CAS  Google Scholar 

  9. Wang H, Liu W (2004) J Sep Sci 27:1189–1194

    Article  CAS  Google Scholar 

  10. Bolanča T, Cerjan-Stefanović Š, Novič M (2005) Chromatographia 61:181–187

    Article  Google Scholar 

  11. Bolanča T, Cerjan-Stefanović Š, Regelja M, Regelja H, Lončarić S (2005) J Chromatogr A 1085:74–85

    Article  Google Scholar 

  12. Bolanča T, Cerjan-Stefanović Š, Ukić Š, Luša M, Rogošić M (2009) Chromatographia 70:15–20

    Article  Google Scholar 

  13. Srečnik G, Debeljak Ž, Cerjan-Stefanović Š, Bolanča T, Novič M, Lazarić K, Gumhalter-Lulić Ž (2002) Croat Chem Acta 75:713–725

    Google Scholar 

  14. Vasiljević T, Onjia A, Čokeša Đ, Laušević M (2004) Talanta 64:785–790

    Article  Google Scholar 

  15. Hervás C, Martinez AC, Silva M, Serrano JM (2005) J Chem Inf Model 45:894–903

    Article  Google Scholar 

  16. Arulsudar N, Subramanian N, Murthy RSR (2005) J Pharm Pharmaceut Sci 8:243–258

    CAS  Google Scholar 

  17. Takayama K, Fujikawa M, Nagai T (1999) Pharm Res 16:1–6

    CAS  Google Scholar 

  18. Murtoniemi E, Merkku P, Kinnunen P, Leiviska K, Yliruusi J (1994) Int J Pharm 110:101–108

    Article  CAS  Google Scholar 

  19. Tham SY, Agatonović-Kuštrin S (2002) J Pharm Biomed Anal 28:581–590

    Article  CAS  Google Scholar 

  20. Ruggieri F, D′Archivio AA, Carlucci G, Mazzeo P (2005) J Chromatogr A 1076:163–169

    Article  CAS  Google Scholar 

  21. Loukas YL (2000) J Chromatogr A 904:119–129

    Article  CAS  Google Scholar 

  22. So SS, Karplus M (1996) J Med Chem 39:5246–5256

    Article  CAS  Google Scholar 

  23. So SS, Richards WG (1992) J Med Chem 35:3201–3207

    Article  CAS  Google Scholar 

  24. Loukas YL (2001) Int J Pharm 226:207–211

    Article  CAS  Google Scholar 

  25. Erturk S, Sevinc Aktas E, Ersoy L, Fıcicioglu S (2003) J Pharm Biomed Anal 33:1017–1023

    Article  Google Scholar 

  26. Petkovska R, Cornett C, Dimitrovska A (2008) Anal Lett 41:992–1009

    Article  CAS  Google Scholar 

  27. Nigović B, Damić M, Injac R, Kočevar Glavač N, Štrukelj B (2009) Chromatographia 69:1299–1305

    Article  Google Scholar 

  28. Ferreiera SLC, Bruns RE, Da Silva EGP, Dos Santos WNL, Quintella CM, David JM, De Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB (2007) J Chromatogr A 1158:2–14

    Article  Google Scholar 

  29. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    Google Scholar 

  30. Malenović A, Ivanović D, Medenica M, Jančić B, Marković S (2004) J Sep Sci 27:1087–1092

    Article  Google Scholar 

  31. Jančić-Stojanović B, Malenović A, Ivanović D, Rakić T, Medenica M (2009) J Chromatogr A 1216:1263–1269

    Article  Google Scholar 

  32. Jančić-Stojanović B, Malenović A, Ivanović D, Medenica M (2009) Acta Chim Slov 56:507–512

    Google Scholar 

  33. Armstrong NA (2006) Pharmaceutical experimental design and interpretation. Taylor & Francis, London

    Book  Google Scholar 

  34. Cybenko G (1989) Mathematics of control signals and systems—MCSS 2:303–314

    Article  Google Scholar 

  35. Bishop CM (1995) Neural networks for pattern recognition. University press, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors thank to the Ministry of Science of the Republic of Serbia for supporting these investigations in the Project 172052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Jančić-Stojanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malenović, A., Jančić-Stojanović, B., Kostić, N. et al. Optimization of Artificial Neural Networks for Modeling of Atorvastatin and Its Impurities Retention in Micellar Liquid Chromatography. Chromatographia 73, 993–998 (2011). https://doi.org/10.1007/s10337-011-1994-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-1994-6

Keywords

Navigation