Skip to main content
Log in

Selective and Sensitive Determination of Pheomelanin in Biological Samples Using MEKC with Laser-Induced Fluorescence Detection Based on Intramolecular Excimer-Forming Fluorescence Derivatization

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A highly selective micellar electrokinetic capillary chromatography (MEKC) method with laser-induced fluorescence (LIF) detection for the sensitive determination of pheomelanin in diverse biological materials was originally described. The derivatization reagent, 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), allowed for the selective detection of the two aminohydroxyphenylalanines (AHPs) markers for pheomelanin monitored at 500 nm. Multiple labeling of two AHPs with PSE allowed the formation of intramolecular excimers that emit at longer wavelengths (500 nm) than the mono-labeled analytes (360–420 nm) based on intramolecular excimer-forming fluorescence derivatization. Optimal separation of the labeled polyamines was achieved using a separation buffer consisting of 20 mM phosphate pH 7.4, 30 mM cholate, and 30% methanol. Using these conditions, the two AHPs were separated within 12 min, and the relative standard deviations (RSDs) were less than 1.5 and 1.6% (intra-run), 3.8 and 4.6% (inter-run, for a 6-day period) for the migration times and peak areas (n = 10), respectively. This method was successfully applied to the monitoring of pheomelanin in diverse biological samples with the spiked recoveries in the range of 94–101%. At a signal-to-noise ratio of 3, the detection limit for AHPs in the real samples was 31 pM for 3-AHP and 35 pM for 4-AHP, respectively, which are superior to those previously reported in the literature using fluorescence detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prota G (1992) Melanins and melanogenesis. Academic Press, New York, p 1

    Google Scholar 

  2. Mastrangelo MJ, Bellet RE, Kane MJ, Berd D (1995) Chemotherapy of melanoma. In: Perry MC (ed) Chemotherapy source book. Williams & Wilkins, Baltimore, p 886

    Google Scholar 

  3. Riesz J, Sarna T, Meredith P (2006) J Phys Chem B 110(28):13985–13990. doi:10.1021/jp054869l

    Article  CAS  Google Scholar 

  4. Meredith P, Sarna T (2006) Pigment Cell Res 19(6):572–594. doi:10.1111/j.1600-0749.2006.00345.x

    Article  CAS  Google Scholar 

  5. Jimbow K (1995) Keio J Med 44(1):9–18

    CAS  Google Scholar 

  6. Kolb AM, Lentjes EG, Smit NP, Schothorst A, Vermeer BJ, Pavel S (1997) Anal Biochem 252:293–298. doi:10.1006/abio.1997.2342

    Article  CAS  Google Scholar 

  7. Wakamatsu K, Ito S (2002) Pigment Cell Res 15:174–183. doi:10.1034/j.1600-0749.2002.02017.x

    Article  CAS  Google Scholar 

  8. Takasaki A, Nezirević D, Årstrand K, Wakamatsu K, Ito S, Kågedal B (2003) Pigment Cell Res 16:480–486. doi:10.1034/j.1600-0749.2003.00086.x

    Article  CAS  Google Scholar 

  9. Nezirević D, Arstrand K, Kågedal B (2007) J Chromatogr A 1163(1-2):70–79. doi:10.1016/j.chroma.2007.06.007

    Article  Google Scholar 

  10. Wakamatsu K, Ito S, Rees JL (2002) Pigment Cell Res 15(3):225–232. doi:10.1034/j.1600-0749.2002.02009.x

    Article  CAS  Google Scholar 

  11. Ito S, Fujita K (1985) Anal Biochem 144:527–536. doi:10.1007/BF00404326

    Article  CAS  Google Scholar 

  12. Panzella L, Manini P, Monfrecola G, d’Ischia M, Napolitano A (2007) Pigment Cell Res 20:128–133. doi:10.1111/j.1600-0749.2006.00359.x

    Article  CAS  Google Scholar 

  13. Ito S, Jimbow K (1983) J Invest Dermatol 80:268–272. doi:10.1111/1523-1747.ep12534616

    Article  CAS  Google Scholar 

  14. Yang Q, Zhang XL, Ma M, Huang KJ, Zhang JX, Ni WZ, Fang CX, Zheng CY (2007) J Chromatogr A 1146:23–31. doi:10.1016/j.chroma.2007.01.077

    Article  CAS  Google Scholar 

  15. Zhang XL, Yang Q, Jiao BH, Dai J, Zhang JX, Ni WZ (2008) J Chromatogr B 861(1):136–139. doi:10.1016/j.jchromb.2007.11.031

    Article  CAS  Google Scholar 

  16. Nohta H, Satozono H, Koiso K, Yoshida H, Ishida J, Yamaguchi M (2000) Anal Chem 72:4199–4204. doi:10.1021/ac0002588

    Article  CAS  Google Scholar 

  17. Yang S, Khaledi MG (1995) Anal Chem 67:499–510. doi:10.1021/ac00099a004

    Article  CAS  Google Scholar 

  18. Slominski A, Plonka PM, Pisarchik A, Smart JL, Tolle V, Wortsman J, Low MJ (2005) Endocrinology 146(3):1245–1253. doi:10.1210/en.2004-0733

    Article  CAS  Google Scholar 

  19. Nezirević D, Rundström A, Kågedal B (2009) J Chromatogr A 1216:5730–5739. doi:10.1016/j.chroma.2009.05.063

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial support from the Project (No. 2008M17) supported by Special Research Fund for the National Non-profit Institutes (East China Sea Fisheries Research Institute) of CAFS of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Yuan, B. & Yang, Q. Selective and Sensitive Determination of Pheomelanin in Biological Samples Using MEKC with Laser-Induced Fluorescence Detection Based on Intramolecular Excimer-Forming Fluorescence Derivatization. Chromatographia 73, 527–534 (2011). https://doi.org/10.1007/s10337-010-1841-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-010-1841-1

Keywords

Navigation