Abstract
Sexing bird species with monomorphic plumage is generally challenging, and sexual size dimorphism (SSD) is often used to develop morphometric-based sexing tools, e.g., using discriminant functions. Within species, local selection pressures, age-related and season-related growth may, however, induce geographical and temporal variations in body size and SSD. Such variations may complicate the development of reliable morphometric-based sexing methods at a broad scale. We first investigated body size variations in a migratory shorebird species with wide breeding and wintering ranges, the Sanderling Calidris alba, within the two breeding populations (Greenland and Russia) and three staging/wintering populations (United Kingdom, Iceland and Mauritania), which belong to the same flyway. Then, for samples from each region, we tested whether site-specific (i.e., “regional”) functions performed better than functions developed for birds from the other sites (i.e., “foreign” functions) or than an overall (“flyway”) function that combined all sampled individuals. We found minor variations in SSD between regions, but significant differences in body size between sexes and regions. Females were larger than males and, for instance, breeders had longer wings than staging and wintering birds. Regional functions had similar sexing efficiency as any other functions applied to sample from each region, except for Western Africa where the regional function performed slightly better than some of the other functions. Furthermore, the flyway function developed after merging all subsamples had a similar efficiency than the regional functions, i.e., from 75.4% to 90% of correct sex assignment depending on the region. Given the small or lack of benefit in using regional functions, we conclude that the flyway function can be used reliably to sex Sanderlings measured at different sites, years or seasons within the East Atlantic flyway. Our results may help to develop global sexing function for other bird species.
Zusammenfassung
Die Geschlechtsbestimmung einer Zugvogelart anhand von Körpermaßen funktioniert trotz geografischer und zeitlicher Variationen der Körpergröße und des Geschlechtsdimorphismus entlang seiner gesamten Zugroute.
Die Geschlechtsbestimmung von Vogelarten mit monomorphem Gefieder ist in der Regel schwierig. Bei solchen Arten wird häufig der Größendimorphismus zwischen den Geschlechtern (SSD) z. B. unter Verwendung von Diskriminanzfunktionen zur Geschlechtsbestimmung verwendet. Innerhalb einer Art können jedoch lokale Selektionszwänge sowie alters- und saisonbedingtes Wachstum zu geografischen und zeitlichen Variationen der Körpergröße und des SSD führen. Solche Schwankungen können die Entwicklung zuverlässiger Methoden zur Geschlechtsbestimmung anhand morphometrischer Merkmale erschweren. Anhand einer Watvogelart mit großen Brut- und Überwinterungsgebieten, dem Sanderling Calidris alba, untersuchten wir auf derselben Zugroute die Variationen der Körpermaße innerhalb von zwei Brut- (Grönland und Russland) und drei Rast- bzw. Überwinterungspopulationen (Vereinigtes Königreich, Island und Mauretanien). Anschließend testeten wir für Proben aus jeder Region, ob standortspezifische Diskriminanzfunktionen besser abschnitten als solche, die für Vögel von anderen Standorten entwickelt wurden, oder als eine Gesamtfunktion, die alle beprobten Individuen kombinierte.
Wir fanden geringe Unterschiede in der SSD zwischen den Regionen, aber signifikante Unterschiede in der Körpergröße zwischen den Geschlechtern und den Regionen. Weibchen waren größer als Männchen, und Brüter hatten beispielsweise längere Flügel als Rast- und Überwinterungsvögel. Die standortspezifischen Funktionen waren bei der Geschlechtsbestimmung ähnlich effizient wie alle anderen Funktionen, die auf die Stichproben aus jeder Region angewandt wurden, mit Ausnahme von Westafrika, wo die regionale Funktion etwas besser abschnitt als andere Funktionen. Darüber hinaus wies die nach der Zusammenführung aller Teilstichproben entwickelte Gesamtfunktion mit einer korrekten Geschlechtszuordnung zwischen 75,4% und 90% je nach Region eine ähnliche Effizienz auf, wie die jeweiligen standortspezifischen Funktionen. Angesichts des geringen oder fehlenden Nutzens standortspezifisch angepasster Funktionen kommen wir zu dem Schluss, dass die Gesamtfunktion zuverlässig zur Geschlechtsbestimmung von Sanderlingen verwendet werden kann, die an verschiedenen Orten, in verschiedenen Jahren oder Jahreszeiten auf der ostatlantischen Zugroute vermessen wurden. Unsere Ergebnisse können dazu beitragen, weitere umfassend geltende Methoden zur Geschlechtsbestimmung für andere Vogelarten zu entwickeln.


Similar content being viewed by others
Data availability
Data are available on request from the concerned authors.
References
Almeida JB, Lopes IF, Oring LW, Tibbitts TL, Pajot LM, Lanctot RB (2020) After-hatch and hatch year Buff-breasted Sandpipers Calidris subruficollis can be sexed accurately using morphometric measures. Wader Study 127:147–155. https://doi.org/10.18194/ws.00189
Anderson AM, Friis C, Gratto-Trevor CL, Morrison RG, Smith PA, Nol E (2019) Consistent declines in wing lengths of Calidridine sandpipers suggest a rapid morphometric response to environmental change. PLoS ONE 14:e0213930. https://doi.org/10.1371/journal.pone.0213930
Badyaev AV, Hill GE, Stoehr AM, Nolan PM, McGraw KJ (2000) The evolution of sexual size dimorphism in the house finch. II. Population divergence in relation to local selection. Evolution 54:2134–2144. https://doi.org/10.1111/j.0014-3820.2000.tb01255.x
Baker AJ, Piersma T, Greenslade AD (1999) Molecular vs. phenotypic sexing in Red Knots. Condor 101:887–893. https://doi.org/10.2307/1370083
Bugoni L, Furness RW (2009) Age composition and sexual size dimorphism of albatrosses and petrels off Brazil. Mar Ornithol 37:253–260
Carvalho Provinciato IC, Araújo MS, Jahn AE (2018) Drivers of wing shape in a widespread Neotropical bird: a dual role of sex-specific and migration-related functions. Evol Ecol 32:379–393. https://doi.org/10.1007/s10682-018-9945-4
Conklin JR, Reneerkens J, Verkuil YI, Tomkovich PS, Palsbøll PJ, Piersma T (2016) Low genetic differentiation between Greenlandic and Siberian Sanderling populations implies a different phylogeographic history than found in Red Knots. J Ornithol 157:325–332. https://doi.org/10.1007/s10336-015-1284-4
de Abreu FHT, Schietti J, Anciães M (2018) Spatial and environmental correlates of intraspecific morphological variation in three species of passerine birds from the Purus-Madeira interfluvium, Central Amazonia. Evol Ecol 32:191–214. https://doi.org/10.1007/s10682-018-9929-4
Dechaume-Moncharmont FX, Monceau K, Cezilly F (2011) Sexing birds using discriminant function analysis: a critical appraisal. Auk: Ornithol Adv 128:78–86. https://doi.org/10.1525/auk.2011.10129
Demongin L (2016) Identification guide to birds in the hands. Beauregard-Vendon
Ellrich H, Salewski V, Fiedler W (2010) Morphological sexing of passerines: not valid over wider geographical scales. J Ornithol 151:449–458. https://doi.org/10.1007/s10336-009-0478-z
Engelmoer M, Roselaar CS (1998) Geographic variation in waders. Kluwer, Dordrecht
Engelmoer M, Roselaar CS, Nieboer E, Boere GC (1987) Biometrics in waders. Wader Study Group Bull 51:44–47
Evans PR (1986) Correct measurement of wing-length of waders. Wader Study Group Bull 48:11
Fairbairn DJ, Blanckenhorn WU, Szekely T (2007) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, London
Fernández G, Lank DB (2007) Variation in the wing morphology of Western Sandpipers (Calidris Mauri) in relation to sex, age class, and annual cycle. The Auk: Ornithol Adv 124(3):1037–1046. https://doi.org/10.1093/auk/124.3.1037
Francis CM, Wood DS (1989) Effects of age and wear on wing length of Wood-Warblers (Efecto de la edad y el desgaste en el largo del ala de Emberísidos (Emberizidae)). J Field Ornithol 60:495–503
Gardner JL, Amano T, Backwell PR, Ikin K, Sutherland WJ, Peters A (2014) Temporal patterns of avian body size reflect linear size responses to broadscale environmental change over the last 50 years. J Avian Biol 45:529–535. https://doi.org/10.1111/jav.00431
Granadeiro JP (1993) Variation in measurements of Cory’s Shearwater between populations and sexing by discriminant analysis. Ringing Migr 14:103–112. https://doi.org/10.1080/03078698.1993.9674051
Griffiths R (2000) Sex identification using DNA markers. In: Baker AJ (ed) Molecular methods in ecology. Blackwell Science, Oxford, pp 295–321
Gudmundsson GA, Lindström Å (1992) Spring migration of Sanderlings Calidris alba through SW Iceland: wherefrom and whereto ? Ardea 80:315–326
Hall S, Fransson T (2000) Lesser Whitethroats under time-constraint moult more rapidly and grow shorter wing feathers. J Avian Biol 31:583–587. https://doi.org/10.1034/j.1600-048X.2000.310419.x
Hallgrimsson GT, Helgason HH, Palsdottir ES, Palsson S (2016) Sexing adult and fledgling Lesser Black-backed Gulls from morphometrics. Ringing Migr 31:68–73. https://doi.org/10.1080/03078698.2016.1190617
Helfenstein F, Danchin E, Wagner RH (2004) Assortative mating and sexual size dimorphism in Black-legged Kittiwakes. Waterbirds 27:350–354. https://doi.org/10.1675/1524-4695(2004)027[0350:AMASSD]2.0.CO;2
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276
Jehl JR Jr, Murray G Jr (1986) The evolution of normal and reverse sexual size dimorphism in shorebirds and other birds. Curr Ornithol 3:1–86. https://doi.org/10.1007/978-1-4615-6784-4_1
Kelly DJ, O’connell DP, Ó Marcaigh F, Kelly SBA, Karya A, Analuddin K, Marples N (2024) Rolling with the punches—How competition shapes the morphology of small passerines on small islands. J Biogeogr 00:1–9. https://doi.org/10.1111/jbi.14838
Kocijan I, Dolenec P, Sinko T, Nenadic DD, Pavokovic G, Dolenec Z (2011) Sex-typing bird species with little or no sexual dimorphism: an evaluation of molecular and morphological sexing. J Biol Res—Thessaloniki 15:145–150
Koloski L, Coulson S, Nol E (2016) Sex determination in breeding Dunlin (Calidris alpina hudsonia). Waterbirds 39:27–33. https://doi.org/10.1675/063.039.0104
Lafuente E, Beldade P (2019) Genomics of developmental plasticity in animals. Front Genet 10:720
Lessells CM, Mateman AC (1998) Sexing birds using random amplified polymorphic DNA (RAPD) markers. Mol Ecol 7(2):187–195. https://doi.org/10.1046/j.1365-294x.1998.00331.x
Loonstra AHJ, Piersma T, Reneerkens J (2016) Staging duration and passage population size of Sanderlings in the western Dutch Wadden Sea. Ardea 104:49–61. https://doi.org/10.5253/arde.v104i1.a4
Lourenço PM, Alves JA, Reneerkens J, Loonstra AJ, Potts PM, Granadeiro JP, Catry T (2016) Influence of age and sex on winter site fidelity of sanderlings Calidris alba. PeerJ 4:e2517. https://doi.org/10.7717/peerj.2517
Lovich JE, Gibbons JW (1992) A review of techniques for quantifying sexual size dimorphism. Growth Dev Aging 56:269–281
Low M (2006) Sex, age and season influence morphometrics in the New Zealand Stitchbird (or Hihi; Notiomystis cincta). Emu 106:297–304. https://doi.org/10.1071/MU06003
Meissner W, Pilacka L (2008) Sex identification of adult Dunlins Calidris alpina alpina migrating in autumn through Baltic region. Ornis Fennica 85:135–139
Meissner W, Pinchuk P, Karlionova N, Fischer I, Pilacka L (2018) Sexual size dimorphism and sex determination by external measurements in the Redshank Tringa totanus. Turk J Zool 42:1–5. https://doi.org/10.3906/zoo-1705-52
Milá B, Wayne RK, Smith TB (2008) Ecomorphology of migratory and sedentary populations of the yellow-rumped warbler (Dendroica coronata). The Condor 110:335–244. https://doi.org/10.1525/cond.2008.8396
Morinha F, Cabral JA, Bastos E (2012) Molecular sexing of birds: a comparative review of polymerase chain reaction (PCR)-based methods. Theriogenology 78:703–714. https://doi.org/10.1016/j.theriogenology.2012.04.015
Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82(4):591–605. https://doi.org/10.1111/j.1469-185X.2007.00027.x
Niemc A, Remisiewicz M, Avni J, Underhill LG (2018) Sexual dimorphism in adult Little Stints (Calidris minuta) revealed by DNA sexing and discriminant analysis. PeerJ 6:e5367. https://doi.org/10.7717/peerj.5367
Pienkowski MW, Green GH (1976) Breeding biology of Sanderlings in north-east Greenland. Brit Birds 69:165–177
Pienkowski MW, Minton CDT (1973) Wing length changes of the Knot with age and time since moult. Bird Study 20:63–68. https://doi.org/10.1080/00063657309476359
Pohlen ZM, Decicco LH, Johnson JA, Buchanan JB, Tomkovich PS (2021) Sex determination of Red Knots Calidris canutus roselaari using morphometrics. Wader Study 128:183–188. https://doi.org/10.18194/ws.00241
R Development Core Team (2022) R: a language and environment for statistical computing, reference index Version 4.2.1. R Foundation for Statistical Computing, Vienna
Remisiewicz M, Wennerberg L (2006) Differential migration strategies of the Wood Sandpiper (Tringa glareola)–genetic analyses reveal sex differences in morphology and spring migration phenology. Ornis Fennica 83:1–10
Reneerkens J, Morrison RIG, Coulomb G (2008) First re-sighting of an individually marked Sanderling Calidris alba from Ellesmere Island. Wader Study Group Bull 115:116–118
Reneerkens J, Benhoussa A, Boland H, Collier M, Grond K, Günther K, Hallgrimsson GT, Hansen J, Meissner W, de Meulenaer B, Ntiamoa-Baidu Y, Piersma T, Poot M, van Roomen M, Summers RW, Tomkovich PS, Underhill LG (2009) Sanderlings using African-Eurasian flyways: a review of current knowledge. Wader Study Group Bull 116:2–20
Reneerkens J, Versluijs TS, Piersma T, Alves JA, Boorman M, Corse C, Gilg O, Hallgrimsson GT, Lang J, Loos B, Ntiamoa-Baidu Y, Nuoh AA, Potts PM, ten Horn J, Lok T (2020) Low fitness at low latitudes: wintering in the tropics increases migratory delays and mortality rates in an Arctic breeding shorebird. J Anim Ecol 89:691–703. https://doi.org/10.1111/1365-2656.13118
Richardson DS, Jury FL, Blaakmeer K, Komdeur J, Burke T (2001) Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Mol Ecol 10:2263–2273. https://doi.org/10.1046/j.0962-1083.2001.01355.x
Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2013) Package ‘mass.’ Cran r 538:113–120
Rising JD, Somers KM (1989) The measurement of overall body size in birds. Auk: Ornithol Adv 106:666–674. https://doi.org/10.1093/auk/106.4.666
Robertson BC, Gemmell NJ (2006) PCR-based sexing in conservation biology: wrong answers from an accurate methodology? Conserv Genet 7:267–271. https://doi.org/10.1007/s10592-005-9105-6
Saino N, Rubolini D, Serra L, Caprioli M, Morganti M, Ambrosini R, Spina F (2010) Sex-related variation in migration phenology in relation to sexual dimorphism: a test of competing hypotheses for the evolution of protandry. J Evol Biol 23:2054–2065. https://doi.org/10.1111/j.1420-9101.2010.02068.x
Santiago-Alarcon D, Parker PG (2007) Sexual size dimorphism and morphological evidence supporting the recognition of two subspecies in the Galápagos Dove. Condor 109:132–141. https://doi.org/10.1093/condor/109.1.132
Shealer DA, Cleary CM (2007) Sex determination of adult Black Terns by DNA and morphometrics: Tests of sample size, temporal stability and geographic specificity in the classification accuracy of discriminant function models. Waterbirds 30:180–188. https://doi.org/10.1675/1524-4695(2007)30[180:SDOABT]2.0.CO;2
Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406. https://doi.org/10.1038/nclimate1259
Soloviev MY, Tomkovich RS (1995) Biometrics of Sanderlings Calidris alba from the Taimyr. Ringing Migr 16:91–99. https://doi.org/10.1080/03078698.1995.9674097
van der Velde M, Haddrath O, Verkuil YI, Baker AJ, Piersma T (2017) New primers for molecular sex identification of waders. Wader Study 124:147–151
Weidinger K, van Franeker JA (1998) Applicability of external measurements to sexing of the Cape petrel Daption capense at within-pair, within-population and between-population scales. J Zool 245:473–482. https://doi.org/10.1017/S0952836998008115
Witkowska M, Meissner W (2020) Sexual dimorphism in size and plumage in adult Curlew Sandpipers (Calidris ferruginea) migrating in autumn through the Baltic Sea region. Ornis Fennica 97:186–199
Wood AG (1987) Discriminating the sex of Sanderling Calidris alba: some results and their implications. Bird Study 34:200–204. https://doi.org/10.1080/00063658709476962
Yannic G, Broquet T, Strøm H, Aebischer A, Dufresnes C, Gavrilo MV, Gilchrist HG, Mallory ML, Morrison RIG, Sabard B, Sermier R, Gilg O (2016) Genetic and morphological sex identification methods reveal a male-biased sex ratio in the Ivory Gull Pagophila eburnea. J Ornithol 157:861–873. https://doi.org/10.1007/s10336-016-1328-4
Youngflesh C, Saracco JF, Siegel RB, Tingley MW (2022) Abiotic conditions shape spatial and temporal morphological variation in North American birds. Nat Ecol Evol 6:1860–1870. https://doi.org/10.1038/s41559-022-01893-x
Zimova M, Weeks BC, Willard DE, Giery ST, Jirinec V, Burner RC, Winger BM (2023) Body size predicts the rate of contemporary morphological change in birds. Proc Natl Acad Sci USA 120:e2206971120. https://doi.org/10.1073/pnas.2206971120
Acknowledgements
We are particularly grateful to all people who searched for the nests and helped to collect the field data. Yvonne Verkuil, Marco Van de Velde (University of Groningen) and Anneke Bol (NIOZ) molecularly sexed the birds from Mauritania, Iceland and Zackenberg (Greenland). Data provided by AW were collected by the Shorebird Research Group at Durham University. The Government of Greenland (Ministry of Domestic Affairs, Nature and Environment) in Nuuk granted access and research permits for field work in the National Park. We thank the two reviewers whose comments have greatly contributed to improve the manuscript.
Funding
This research was supported by the French Polar Institute (IPEV, program 1036 ‘Interactions’), the Agence Nationale de la Recherche (ANR-21-CE02-0024 PACS to L. Bollache), the Groupe de Recherche en Ecologie Arctique (GREA) and the University of Bourgogne Franche-Comté (Chrono-environnement lab).
Author information
Authors and Affiliations
Contributions
TP and OG designed the study and wrote the first draft of the manuscript; TP and LE carried out data analyses; MT helped with the genetic analysis; FXDM, GY and LB provided methodological support and contributed to drafting the manuscript; GH, JH, JL, JM, JR, NS, MS, JtH, PT, AW contributed to data collection and drafting the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest. The authors have no competing interests to declare that are relevant to the content of this article.
Ethical approval
All data were collected by people who have licences for handling animals for scientific purposes. All our fieldworks compiled with the ethical standards and national laws on animal welfare.
Additional information
Communicated by F. Bairlein.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pagnon, T., Etchart, L., Teixeira, M. et al. Using a common morphometric-based method to sex a migratory bird along its entire flyway despite geographical and temporal variations in body size and sexual size dimorphism. J Ornithol 165, 923–934 (2024). https://doi.org/10.1007/s10336-024-02178-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10336-024-02178-9


