Skip to main content

First steps to success: identification of divergence among the northern and the southern lineages of African Pygmy Kingfisher (Ispidina picta) (Coraciiformes: Alcedinidae)

Abstract

Currently little is known about intra-African bird migrants. Migratory connectivity between populations may be affected by past climatic fluctuations as well as contemporary threats that affect habitat connectivity resulting in genetic differentiation. Here, integrated molecular and morphological data was used to examine genetic diversity, elucidate patterns of differentiation and assess evolutionary history of the African Pygmy Kingfisher (Ispidina picta). Three subspecies have been described namely: I. p. picta, I. p. ferrugina and I. p. natalensis. Here, molecular analysis was performed for two subspecies; I. p. natalensis (South Africa) and I. p. picta (Uganda, Ghana and Nigeria) using mitochondrial and nuclear genes. Our results provided evidence of two genetic lineages corresponding to subspecies designation: I. p. natalensis, and I. p. picta that diverged 1.74 Mya ago in the Pleistocene. Lack of differentiation was observed within the two subspecies indicating that connectivity between the populations has been maintained. Morphometric variation identified differences between the subspecies and further identified sexual dimorphism within I. p. natalensis. This study provides for the first time a genetic and morphometric appraisal of African Pygmy Kingfishers. We recommend that this or similar approaches be applied to other widespread African bird species that are often overlooked in a global conservation context.

Zusammenfassung

Erste Schritte zum Erfolg: Identifizierung der Divergenz zwischen der nördlichen und der südlichen Linie des Natalzwergfischer (Ispidina picta) (Coraciiformes: Alcedinidae). Derzeit ist nur wenig über innerafrikanische Zugvögel bekannt. Die Migrationskonnektivität zwischen den Populationen können sowohl durch vergangene Klimaschwankungen als auch durch aktuelle Bedrohungen beeinträchtigt sein, die sich auf die Lebensraumverbindungen auswirken und zu einer genetischen Differenzierung führen. Hier wurden integrierte molekulare und morphologische Daten verwendet, um die genetische Vielfalt zu untersuchen, Differenzierungsmuster aufzuklären und die Evolutionsgeschichte des Natalzwergfischer (Ispidina picta) zu bewerten. Es wurden drei Unterarten beschrieben, nämlich: I. p. picta, I. p. ferrugina und I. p. natalensis. Hier wurde eine molekulare Analyse für zwei Unterarten durchgeführt: I. p. natalensis (Südafrika) und I. p. picta (Uganda, Ghana und Nigeria) unter Verwendung mitochondrialer und nuklearer Gene. Unsere Ergebnisse lieferten den Nachweis von zwei genetischen Abstammungslinien, die der Unterartenbezeichnung entsprechen: I. p. natalensis und I. p. picta, die sich vor 1,74 Millionen Jahren im Pleistozän auseinander entwickelten. Innerhalb der beiden Unterarten wurde keine Differenzierung festgestellt, was darauf hindeutet, dass die Verbindung zwischen den Populationen erhalten geblieben ist. Morphometrische Variationen wiesen auf Unterschiede zwischen den Unterarten hin, und auch innerhalb von I. p. natalensis wurde Sexualdimorphismus festgestellt. Diese Studie liefert zum ersten Mal eine genetische und morphometrische Bewertung der Natalzwergfischer. Wir empfehlen, diesen oder einen ähnlichen Ansatz auch bei anderen weit verbreiteten afrikanischen Vogelarten anzuwenden, die in einem globalen Naturschutzkontext oft übersehen werden.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alerstam T (1993) Bird migration. Cambridge University Press, Cambridge

    Google Scholar 

  • Alerstam T, Rosén M, Bäckman J, Ericson PGP, Hellgren O (2007) Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biol 5:e197

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Allen KE, Greenbaum E, Hime PM, Tapondjou NWP, Sterkhova VV, Kusamba C, Rödel MO, Penner J, Peterson AT, Brown RM (2021) Rivers, not refugia, drove diversification in arboreal, sub-Saharan African snakes. Ecol Evol 11:6133–6152

    PubMed  PubMed Central  Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Article  Google Scholar 

  • Andersen MJ, McCullough JM, Mauck WM III, Smith BT, Moyle RG (2018) A phylogeny of kingfishers reveals an Indomalayan origin and elevated rates of diversification on oceanic islands. J Biogeogr 45:269–281

    Article  Google Scholar 

  • Arizaga J, Campos F, Alonso D (2006) Variations in wing morphology among subspecies might reflect different migration distances in Bluethroat. Ornis Fenn 83:162

    Google Scholar 

  • Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Huelsenbeck JP, Ronquist F, Swofford DL, Cummings MP, Rambaut A (2012) BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol 61:170–173

    PubMed  Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Article  Google Scholar 

  • Berruti A, Harrison JA, Navarro RA (1994) Seasonal migration of terrestrial birds along the southern and eastern coasts of southern Africa. Ostrich 65:54–65

    Article  Google Scholar 

  • Berthold P, Pulido F (1994) Heritability of migratory activity in a natural bird population. Proc R Soc B 257:311–315

    Article  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    PubMed  Article  Google Scholar 

  • Bleidorn C, Kruse I, Albrecht S, Bartolomaeus T (2006) Mitochondrial sequence data expose the putative cosmopolitan polychaete Scoloplos armiger (Annelida, Orbiniidae) as a species complex. BMC Evol Biol 6:1–13

    Article  CAS  Google Scholar 

  • Calmaestra RG, Moreno E (2001) A phylogenetically-based analysis on the relationship between wing morphology and migratory behaviour in Passeriformes. Ardea 89:407–416

    Google Scholar 

  • Catanach TA, Johnson KP, Marks BD, Moyle RG, Valim MP, Weckstein JD (2019) Two lineages of kingfisher feather lice exhibit differing degrees of co-speciation with their hosts. Parasitology 146:1083–1095

    CAS  PubMed  Article  Google Scholar 

  • Clancey PA (1984) Miscellaneous taxonomic notes on African birds LXIV. Mus 13:169–187

    Google Scholar 

  • Cowling SA, Cox PM, Jones CD, Maslin MA, Peros M, Spall SA (2008) Simulated glacial and interglacial vegetation across Africa: implications for species phylogenies and trans-African migration of plants and animals. Glob Change Biol 14:827–840

    Article  Google Scholar 

  • del Hoyo J, Sargatal EA, J, (2001) Handbook of the birds of the world—volume 6: mousebirds to hornbills. Lynx Editions, Barcelona

    Google Scholar 

  • del Hoyo J, Collar NJ, Christie DA, Elliott A, Fishpool LDC (2014) HBW and birdlife international illustrated checklist of the birds of the world. BirdLife International, Lynx Editions, Barcelona

    Google Scholar 

  • DeMenocal PB (1995) Plio-pleistocene African climate. Science 270:53–59

    CAS  PubMed  Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:1–8

    Article  CAS  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res 5:1792–1797

    Article  CAS  Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Article  Google Scholar 

  • Fry CH, Fry K, Harris A (1992) Kingfishers, bee-eaters and rollers. Russel Friedman Books, Halfway House

    Google Scholar 

  • Fuchs J, Bowie RC (2015) Concordant genetic structure in two species of woodpecker distributed across the primary West African biogeographic barriers. Mol Phylogenet Evol 88:64–74

    PubMed  Article  Google Scholar 

  • Fuchs J, Crowe T, Bowie RCK (2011) Phylogeography of the fiscal shrike (Lanius collaris): a novel pattern of genetic structure across the arid zones and savannas of Africa. J Biogeogr 38:2210–2222

    Article  Google Scholar 

  • Gardner JL, Trueman JW, Ebert D, Joseph L, Magrath RD (2010) Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Mol Phylogenet Evol 55:1087–1102

    PubMed  Article  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJ (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075

    CAS  PubMed  Article  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM, Godfray C (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Herremans M (1998) Conservation status of birds in Botswana in relation to land use. Biol Conserv 86:139–160

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn 58:247–276

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    CAS  PubMed  Article  Google Scholar 

  • Hung CM, Zink DSV, RM, (2017) The roles of ecology, behaviour and effective population size in the evolution of a community. Mol Ecol 26:3775–3784

    CAS  PubMed  Article  Google Scholar 

  • Irwin MPS (1981) The birds of Zimbabwe. Quest Publications, Salisbury

    Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

    CAS  PubMed  Article  Google Scholar 

  • Klautau M, Russo CA, Lazoski C, Boury-Esnault N, Thorpe JP, Solé-Cava AM (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Mol Biol Evol 53:1414–1422

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lam L, McKinnon EA, Ray JD, Pearman M, Hvenegaard GT, Mejeur J, Moscar L, Pearson M, Applegate K, Mammenga P, Tautin J (2015) The influence of morphological variation on migration performance in a trans-hemispheric migratory songbird. Anim Migr 2:86–95

    Article  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  • Leigh JW, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Lindhe-Norberg UM, Brooke AP, Trewhella WJ (2000) Soaring and non-soaring bats of the family Pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance. J Exp Biol 203:651–664

    CAS  PubMed  Article  Google Scholar 

  • Lockwood R, Swaddle JP, Rayner JM (1998) Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J Avian Biol 29:273–292

    Article  Google Scholar 

  • Maclean GL (1993) Roberts’ birds of southern Africa, 6th edn. Trustees of the J. Voelcker Bird Book Fund, Cape Town

    Google Scholar 

  • Marchetti K, Price T, Richman A (1995) Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. J Avian Biol 26:177–181

    Article  Google Scholar 

  • Marks BD, Willard DE (2005) Phylogenetic relationships of the Madagascar pygmy kingfisher (Ispidina madagascariensis). Auk 122:1271–1280

    Article  Google Scholar 

  • Melo M, Fuchs J (2008) Phylogenetic relationships of the Gulf of Guinea Alcedo kingfishers. Ibis 150:633–639

    Article  Google Scholar 

  • Meyburg BU, Paillat P, Meyburg C (2003) Migration routes of Steppe Eagles between Asia and Africa: a study by means of satellite telemetry. Condor 105:219–227

    Article  Google Scholar 

  • Møller AP, De Lope F, Saino N (1995) Sexual selection in the barn swallow Hirundo rustica. VI aerodynamic adaptations. J Evol Biol 8:671–687

    Article  Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, New York

    Google Scholar 

  • Morley RJ, Kingdon J (2013) Africa’s environmental and climatic past. Mammal Afr 1:43–56

    Google Scholar 

  • Moyle RG (2006) A molecular phylogeny of kingfishers (Alcedinidae) with insights into early biogeographic history. Auk 123:487–499

    Article  Google Scholar 

  • Moyle RG, Fuchs J, Pasquet E, Marks BD (2007) Feeding behavior, toe count, and the phylogenetic relationships among alcedinine kingfishers (Alcedininae). J Avian Biol 38:317–326

    Article  Google Scholar 

  • Mucci N, Mengoni C, Randi E (2017) Discrimination of PCR products by colour and size improves the accuracy of sex-typing in avian species. Conserv Genet Resour 9:73–77

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Newton I (2008) The ecology of bird migration. Academic Press, London, pp 453–473 (Novitates, 1946)

    Google Scholar 

  • Nicholson SE, Flohn H (1980) African environmental and climatic changes and the general atmospheric circulation in late Pleistocene and Holocene. Clim Change 2:313–348

    Article  Google Scholar 

  • Peters CR, O'Brien EM (2001) Palaeo-lake Congo: Implications for Africa’s Late Cenozoic climate–some unanswered. In: Palaeoecology of Africa and the surrounding Islands: Proceedings of the 25th Inqua conference, Durban, South Africa, 3–11 August 1999, vol 27. CRC Press, p 11

  • Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P, Olsson U, Ghosh-Harihar M, Ishtiaq F, Gupta SK, Martens J (2014) Niche filling slows the diversification of Himalayan songbirds. Nature 509:222–225

    CAS  PubMed  Article  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Reilly J (2018) The ascent of birds: how modern science is revealing their story. Pelagic Publishing Ltd, London

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Article  Google Scholar 

  • Sáez AG, Lozano E (2005) Body doubles. Nature 433:111

    PubMed  Article  CAS  Google Scholar 

  • Sausner J, Torres-Mura JC, Robertson J, Hertel F (2016) Ecomorphological differences in foraging and pattering behavior among storm-petrels in the eastern Pacific Ocean. Auk 133:397–414

    Article  Google Scholar 

  • Scott L, Steenkamp M, Beaumont PB (1995) Palaeoenvironmental conditions in South Africa at the Pleistocene–Holocene transition. Quat Sci Rev 14:937–947

    Article  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    CAS  Article  Google Scholar 

  • Sharma DK, Maldonado JE, Jhala YV, Fleischer RC (2004) Ancient wolf lineages in India. Proc R Soc B 271:S1–S4

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Slingenberg A, Braat L, Van Der Windt H, Rademaekers K, Eichler L, Turner K (2009) Study on understanding the causes of biodiversity loss and the policy assessment framework. European Commission Directorate-General for Environment. http://ec.europa.eu/environment/enveco/biodiversity/pdf/causes_biodiv_loss.pdf. Accessed 1 Dec 2021

  • Spitzer M, Wildenhain J, Rappsilber J, Tyers M (2014) BoxPlotR: a web tool for generation of box plots. Nat Methods 11:121–122

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Steyn AGW, Smit CF, Du Toit SHC, Strasheim C (1999) Moderne Statistiek. Van Schaik, Goodwood

    Google Scholar 

  • Terraube J, Mougeot F, Cornulier T, Verma A, Gavrilov A, Arroyo B (2012) Broad wintering range and intercontinental migratory divide within a core population of the near-threatened pallid harrier. Divers Distrib 18:401–409

    Article  Google Scholar 

  • Thomas AL, Balmford A (1995) How natural selection shapes birds’ tails. Am Nat 146:848–868

    Article  Google Scholar 

  • Vilà C, Amorim IR, Leonard JA, Posada D, Castroviejo J, Petrucci-Fonseca F, Crandall KA, Ellegren H, Wayne RK (1999) Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol Ecol 8:2089–2103

    PubMed  Article  Google Scholar 

  • Walther BA (2016) A review of recent ecological changes in the Sahel, with particular reference to land-use change, plants, birds and mammals. Afr J Ecol 54:268–280

    Article  Google Scholar 

  • Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unravelling migratory connectivity. Trends Ecol Evol 17:76–83

    Article  Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  Google Scholar 

  • Yong W, Moore FR (1994) Flight morphology, energetic condition, and the stopover biology of migrating thrushes. Auk 111:683–692

    Google Scholar 

Download references

Acknowledgements

This research was supported by the International Foundation for Science, Stockholm, Sweden (IFS; J/4611-3), with additional support from the African Bird Club (ABC; Expedition Award) and the British Ecological Society (BES; EA17/1146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desiré L. Dalton.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by M. Wink.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Supplementary file2 (DOCX 12 kb)

10336_2022_1996_MOESM3_ESM.pdf

Supplementary file3 Fig. S1. Maximum likelihood tree of cytochrome oxidase 1 (COI) sequences based on the General Time Reversible (GTR+G) model conducted in MEGA7. Numbers below branches indicate bootstrap values (PDF 47 kb)

10336_2022_1996_MOESM4_ESM.pdf

Supplementary file4 Fig. S2. Dated Cytochrome oxidase 1 (COI) gene tree of kingfishers. The divergence times correspond to the mean posterior estimate of their age in millions of year before present (MYA) with the grey bars representing the 95% HPD interval for the time estimates. Each node is labelled with mean node age and its 95% confidence interval range in square brackets above the branch with a posterior probability below the branch (PDF 101 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dalton, D.L., Nupen, L.J., Mwale, M. et al. First steps to success: identification of divergence among the northern and the southern lineages of African Pygmy Kingfisher (Ispidina picta) (Coraciiformes: Alcedinidae). J Ornithol 163, 931–943 (2022). https://doi.org/10.1007/s10336-022-01996-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-022-01996-z

Keywords

  • African Pygmy Kingfisher
  • mtDNA
  • Nuclear DNA