Abstract
Studies of foraging and territory economics in free-living animals are few and have been limited largely to nectar-feeding birds owing to the relative ease of observation and assessment of their food supplies. Such studies indicate that the benefits of defense come about due to the accumulation of nectar on territories, which reduces the time and energy costs expended by territory owners to meet their daily energy demands. I studied the foraging and territory economics of a predator, the Northern Harrier, Circus hudsonius. I hypothesized that territory owners’ rates of energy intake should depend not only on the availability of mice on their territories, but also on their capture success, and more specifically, the product of capture success and mice availability. Territorial harriers spent less time and energy foraging than non-territorial harriers, but more time and energy in aggressive chases. A regression model derived from measurements of capture success and mice availability indicated that territorial defense was sustainable at all but the lowest values of capture success. Even with the added cost of defense, all territorial harriers had energy expenditures below their daily energy needs, whereas two of five non-territorial harriers expended more energy than their daily needs. The amount of time and energy territorial harriers expended in foraging and defense was similar to findings for territorial nectar-feeding birds, but was more variable, which may reflect the stochasticity that capture success had on their rates of energy intake.
Zusammenfassung
Einfluss von Beuteverfügbarkeit und Jagderfolg auf die Ökonomie von Nahrungssuche und Revierverhalten bei einem Greifvogel, Circus hudsonius
Es gibt kaum Untersuchungen zur Ökonomie von Nahrungssuche und Revierverhalten bei wildlebenden Tieren und diese beschränken sich im Wesentlichen auf nektarivore Vögel, weil diese relativ leicht zu beobachten sind und man ihre Nahrungsquellen gut bemessen kann. Solche Studien deuten darauf hin, dass sich der Vorteil einer Verteidigung aus der Menge an Nektar in den Revieren ergibt, was den Zeit- und Energieaufwand verringert, den Revierinhaber zur Deckung ihres täglichen Energiebedarfs aufbringen müssen. Wir untersuchten die Ökonomie von Nahrungssuche und Revierverhalten bei einem Greifvogel, der Hudsonweihe Circus hudsonius. Wir stellten die Hypothese auf, dass die Energieaufnahmeraten der Revierinhaber nicht nur von der Verfügbarkeit von Mäusen in ihren Territorien abhängen, sondern auch vom Jagderfolg und speziell vom Produkt aus Jagderfolg und Beuteverfügbarkeit. Weihen mit Revieren wendeten weniger Zeit und Energie für die Nahrungssuche auf als nicht-territoriale Weihen, dafür aber mehr Zeit und Energie für aggressive Verfolgungsjagden. Ein Regressionsmodell auf der Grundlage von Jagderfolg und Mäuseverfügbarkeit ließ darauf schließen, dass die Verteidigung eines Reviers außer bei den geringsten Jagderfolgen stets wirtschaftlich war. Selbst mit den zusätzlichen Kosten der Verteidigung lag der Energieaufwand sämtlicher territorialen Weihen unter ihrem täglichen Energiebedarf, wohingegen zwei der fünf nicht –territorialen Weihen mehr Energie als den täglichen Bedarf verbrauchten. Der Zeit- und Energieaufwand territorialer Weihen für Nahrungssuche und Verteidigung ähnelte den Befunden für nektarivore Vögel, allerdings war er variabler, was den stochastischen Einfluss des Jagderfolges auf die Energieaufnahmeraten widerspiegeln könnte.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The data analyzed for this study are available as online supplementary material (S1).
Code availability
Not applicable.
References
Aschoff VJ, Pohl H (1970) Der ruheumsatz von vögeln als funktion der tageszeit und der köpergrösse. J Ornithol 111:38–47. https://doi.org/10.1007/BF01668180
Benson JF, Patterson BR (2013) Inter-specific territoriality in a Canis hybrid zone: spatial segregation between wolves, coyotes, and hybrids. Oecologia 173:1539–1550. https://doi.org/10.1007/s00442-013-2730-8
Bildstein KL, Collopy MW (1985) Escorting flight and agonistic interactions in wintering Northern harriers. Condor 87:398–401. https://doi.org/10.2307/1367222
Brown JL (1964) The evolution of diversity in avian territorial systems. Wilson Bull 76:160–169
Carbone C, Mace GM, Roberts SC, MacDonald DW (1999) Energetic constraints on the diet of terrestrial carnivores. Nature 402:286–288. https://doi.org/10.1038/46266
Carpenter FL, MacMillen RE (1976) Energetic cost of feeding territories in an Hawaiian Honeycreeper. Oecologia 26:213–223. https://doi.org/10.1007/BF00345290
Charnov EL, Orians GH, Hyatt K (1976) Ecological implications of resource depression. Am Nat 110:247–259. https://doi.org/10.1086/283062
Creel S, Creel NM (1995) Communal hunting and pack size in African wild dogs, Lycaon pictus. Anim Behav 50:1325–1339. https://doi.org/10.1016/0003-3472(95)80048-4
Cresswell W, Quinn JL (2010) Attack frequency, attack success and choice of prey group size for two predators with contrasting hunting strategies. Anim Behav 80:643–648. https://doi.org/10.1016/j.anbehav.2010.06.024
Daan S, Altenburg W, Boedeltje G et al (1982) Timing of vole hunting in aerial predators. Mammal Rev 12:169–181. https://doi.org/10.1111/j.1365-2907.1982.tb00013.x
Davies NB (1976) Food, flocking and territorial behaviour of the pied wagtail (Motacilla alba yarrellii Gould) in winter. J Anim Ecol 45:235–254. https://doi.org/10.2307/3777
Dunk JR, Cooper RJ (1994) Territory-size regulation in black-shouldered kites. Auk 111:588–595. https://doi.org/10.1093/auk/111.3.588
Erlinge S (1974) Distribution, territoriality and numbers of the weasel Mustela nivalis in relation to prey abundance. Oikos 25:308–314. https://doi.org/10.2307/3543948
Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306. https://doi.org/10.1126/science.1205106
Frost SK, Frost PGH (1980) Territoriality and changes in resource use by sunbirds at Leonotus leonurus (Labiatae). Oecologia 45:109–116. https://doi.org/10.1007/BF00346715
Furness RW, Trinder M, MacArthur D, Douse A (2016) A theoretical approach to estimating bird risk of collision with wind turbines where empirical flight activity data are lacking. Energy Power Eng 8:183–194. https://doi.org/10.4236/epe.2016.84017
Galeotti P (1994) Patterns of territory size and defence level in rural and urban tawny owl (Strix aluco) populations. J Zool 234:641–658. https://doi.org/10.1111/j.1469-7998.1994.tb04870.x
Gill FB, Wolf LL (1975) Economics of feeding territoriality in the golden-winged sunbird. Ecology 56:333–345. https://doi.org/10.2307/1934964
Hahn S, Peter H-U (2003) Feeding territoriality and the reproductive consequences in brown skuas Catharacta antarctica longbergii. Polar Biol 26:552–559. https://doi.org/10.1007/s00300-003-0522-z
Houston AI, McLeery RH, Davies NB (1985) Territory size, prey renewal and feeding rates: interpretation of observations on the pied wagtail (Motacilla alba) by simulation. J Anim Ecol 54:227–239. https://doi.org/10.2307/4633
Krebs JR, Erichsen JT, Webber MI, Charnov EL (1977) Optimal prey selection in the great tit (Parus major). Anim Behav 25:30–38. https://doi.org/10.1016/0003-3472(77)90064-1
Krijgsveld KL, Dijkstra C, Visser CH, Daan S (1998) Energy requirements for growth in relation to sexual size dimorphism in marsh harrier Circus aeruginosus nestlings. Physiol Zool 71:693–702. https://doi.org/10.1086/515983
Krüger O (2005) The evolution of reversed sexual size dimorphism in hawks, falcons and owls: a comparative study. Evol Ecol 19:467–486. https://doi.org/10.1007/s10682-005-0293-9
Liesenjohann T, Eccard JA (2008) Foraging under uniform risk from different types of predators. BMC Ecol 8:19. https://doi.org/10.1186/1472-6785-8-19
López-Bao JV, Rodríguez A, Delibes M, Fedriani JM, Calzada J, Ferreras P, Palomares F (2014) Revisiting food-based models of territoriality in solitary predators. J Anim Ecol 83:934–942. https://doi.org/10.1111/1365-2656.12226
MacArthur RH, Pianka EL (1966) On optimal use of a patchy environment. Am Nat 100:603–609. https://doi.org/10.1086/282454
Masman D, Daan S, Dijkstra C (1988) Time allocation in the kestrel (Falco tinnuculus), and the principle of energy minimization. J Anim Ecol 57:411–432. https://doi.org/10.2307/4914
Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787. https://doi.org/10.1007/s10592-005-9056-y
Pyke GH (1979) The economics of territory size and time budget in the golden-winged sunbird. Am Nat 114:131–145. https://doi.org/10.1086/283458
Quinn JL, Creswell W (2004) Predator hunting behaviour and prey vulnerability. J Anim Ecol 73:143–154. https://doi.org/10.1046/j.0021-8790.2004.00787.x
Raymond M, Robitaille J-F, Lauzon P, Vaudry R (1990) Prey-dependent profitability of foraging behaviour of male and female ermine, Mustela erminea. Oikos 58:323–328. https://doi.org/10.2307/3545223
Redpath S, Amar A, Madders M, Leckie F, Thirgood S (2002) Hen harrier foraging success in relation to land use in Scotland. Anim Conserv 5:113–118. https://doi.org/10.1017/S1367943002002159
Rice WR (1982) Acoustical location of prey by the marsh hawk: adaptation to concealed prey. Auk 99:403–413. https://doi.org/10.1093/auk/99.3.403
Rutz C (2006) Home range size, habitat use, activity patterns and hunting behaviour of urban-breeding Northern Goshawks Accipiter gentilis. Ardea 94(2):185–202
Sand H, Wikenros C, Wabakken P, Liberg O (2006) Effects of hunting group size, snow depth and age on the success of wolves hunting moose. Anim Behav 72:781–789. https://doi.org/10.1016/j.anbehav.2005.11.030
Santangeli A, Hakkarainen H, Laaksonen T, Korpimäki E (2012) Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim Behav 83:1115–1123. https://doi.org/10.1016/j.anbehav.2012.02.002
Schanbel ZE (1938) The estimate of the total fish population of a lake. Am Mathe Monthly 45:348–352. https://doi.org/10.2307/2304025
Schoener TW (1971) Theory of feeding strategies. Annu Rev Ecol Syst 2:369–404. https://doi.org/10.1146/annurev.es.02.110171.002101
Sih A, Christensen B (2001) Optimal diet theory: when does it work, and when and why does it fail? Anim Behav 61:279–390. https://doi.org/10.1006/anbe.2000.1592
Smith KG, Wittenberg SR, Macwhirter RB, Bildstein KL (2020) Northern Harrier (Circus hudsonius), version 1.0. In: Rodewald PG (ed) Birds of the world. Cornell Lab of Ornithology, Ithaca. https://doi.org/10.2173/bow.norhar2.01
Steen R, Løw LM, Sonerud GA, Selås V, Slagsvold T (2011) Prey delivery rates as estimates of prey consumption by Eurasian kestrel Falco tinnunculus nestlings. Ardea 99:1–8. https://doi.org/10.5253/078.099.0101
Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton
Stephens DW, Brown JS, Ydenberg RC (2007) Foraging behavior and ecology. University of Chicago Press, Chicago
Temeles EJ (1985) Sexual size dimorphism of bird-eating hawks: the effect of prey vulnerability. Am Nat 125:485–499. https://doi.org/10.1086/284357
Temeles EJ (1986) Reversed sexual size dimorphism: effect on resource defense and foraging behaviors of nonbreeding northern harriers. Auk 103:70–78. https://doi.org/10.1093/auk/103.1.70
Temeles EJ (1987) The relative importance of prey availability and intruder pressure in feeding territory size regulation by harriers, Circus cyaneus. Oecologia 74:286–297. https://doi.org/10.1007/BF00379372
Temeles EJ (1989a) The effect of prey consumption on territorial defense by harriers: differential responses to neighbors versus floaters. Behav Ecol Sociobiol 24:239–243. https://doi.org/10.1007/BF00295203
Temeles EJ (1989b) Effect of prey consumption on foraging activity of northern harriers. Auk 106:353–357. https://doi.org/10.1093/auk/106.3.353
Temeles EJ (1990a) Northern harriers on feeding territories respond more aggressively to neighbors than to floaters. Behav Ecol Sociobiol 26:57–63. https://doi.org/10.1007/BF00174025
Temeles EJ (1990b) Interspecific territoriality of northern harriers: the role of kleptoparasitism. Anim Behav 40:361–366. https://doi.org/10.1016/S0003-3472(05)80931-5
Temeles EJ, Goldman RS, Kudla AU (2005) Foraging and territory economics of sexually-dimorphic Purple-throated Caribs, Eulampis jugularis, at three heliconias. Auk 122(1):187–204. https://doi.org/10.1093/auk/122.1.187
Turpie JK (1995) Non-breeding territoriality: causes and consequences of seasonal and individual variation in grey plover Pluvialis squatarola behaviour. J Anim Ecol 64:429–438. https://doi.org/10.2307/5646
Wakeley JS (1978a) Activity budgets, energy expenditures, and energy intakes of nesting Ferruginous hawks. Auk 95:667–676. https://doi.org/10.1093/auk/95.4.667
Wakeley JS (1978b) Hunting methods and factors affecting their use by Ferruginous hawks. Condor 80:327–333. https://doi.org/10.2307/1368043
Warkentin IG, West NH (1990) Ecological energetics of wintering merlins Falco columbarius. Physiol Zool 63:308–333. https://doi.org/10.1086/physzool.63.2.30158499
Wilmers CC, Isbell LA, Suraci JP, Williams TM (2017) Energetics-informed behavioral states reveal the drive to kill in leopards. Ecosphere 8(6):e01850. https://doi.org/10.1002/ecs2.1850
Wolf LL, Hainsworth FR (1971) Time and energy budgets of territorial hummingbirds. Ecology 52:980–988. https://doi.org/10.2307/1933803
Acknowledgements
I thank the Davis Audubon Society. Heidrick Farms, Inc., and Hunt-Wesson Foods, Inc., for granting me access to their lands and two anonymous reviewers for helpful comments. Field research was supported by the University of California, Davis, and data analyses and manuscript preparation by Amherst College.
Funding
My research was supported by the University of California, Davis and Amherst College.
Author information
Authors and Affiliations
Contributions
Not applicable.
Corresponding author
Ethics declarations
Conflict of interests
The author declares no conflict of interest.
Ethics approval
Not applicable; note that any data that involved the handling of animals (mark-and-recapture of rodents) were from a study conducted from 1984 to 1986 and published in Temeles (1987).
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Communicated by O. Krüger.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Temeles, E.J. The effects of prey availability and capture success on the foraging and territory economics of a predatory bird, Circus hudsonius. J Ornithol 163, 767–777 (2022). https://doi.org/10.1007/s10336-022-01979-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10336-022-01979-0


