Skip to main content
Log in

Contrasting patterns of natal dispersal of a south temperate House Wren population at local and regional scales

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Dispersal constitutes one of the main processes that shape population genetic structure and dynamics. Combining a capture-mark-resighting methodology and molecular genetics analyses, we studied the natal dispersal behaviour of House Wrens (Troglodytes aedon bonariae) inhabiting a naturally fragmented habitat in south temperate Argentina. Based on data collected over 12 breeding seasons (2005–2016), we tested if males and females differ in natal dispersal behaviour at different spatial scales. At local scale (within study sites), both resighting of banded individuals and genetic analysis showed that females dispersed greater distances than males. At a broader spatial scale (between study sites) resighting of banded individuals could not verify that females were the dispersing sex since long-distance dispersal was rare. However, genetic analyses revealed paradoxical evidence: while the females of populations separated by more than 5 km showed slight but significant genotypic differences among them, males showed genetic differences at a greater distance (> 16 km). Given that genetic analyses can provide evidence of both historical and present-day dispersal the observed genetic differentiation does not necessarily imply that the sex dispersal pattern is reversed at a regional scale. We propose that females have a higher probability of acquiring a partner/territory at closer distances due existing male-biased population sex ratio caused but higher female mortality. Also, although males are less likely to disperse, when they do, they must travel greater distances to find a suitable territory or mate. Such movements would prevent the occurrence of genetic differences among male populations.

Zusammenfassung

Gegenläufige Muster im Dismigrationsverhalten auf lokaler und regionaler Ebene bei einer Hauszaunkönigpopulation der südlichen gemäßigten Breiten.

Dismigration gehört zu den primären Prozessen, welche die genetische Struktur und Dynamik von Populationen gestalten. Durch die Kombination einer Fang-Markierungs-Wiedersicht-Methodik mit molekulargenetischen Analysen erforschten wir das Dismigrationsverhalten von Hauszaunkönigen Troglodytes aedon bonariae in einem von Natur aus fragmentierten Habitat der südlichen gemäßigten Breiten Argentiniens. Basierend auf Daten aus zwölf Brutsaisons (2005–2016) prüften wir, ob sich Männchen und Weibchen auf verschiedenen räumlichen Ebenen im Dismigrationsverhalten unterscheiden. Auf der lokalen Ebene (innerhalb der Studiengebiete) belegten sowohl die Wiedersichtungen beringter Individuen als auch die genetischen Analysen, dass sich die Weibchen über größere Entfernungen verteilten als die Männchen. Auf einer höheren räumlichen Ebene (zwischen den Studiengebieten) ließ sich durch die Wiedersichtungen beringter Individuen nicht bestätigen, dass die Weibchen das abwandernde Geschlecht sind, da Dismigration über weitere Strecken kaum vorkam. Allerdings lieferten die genetischen Analysen verblüffende Ergebnisse: Während die Weibchen von mehr als 5 km auseinanderliegenden Populationen leichte, aber signifikante genotypische Unterschiede aufwiesen, zeigten sich solche genetischen Differenzen bei den Männchen erst bei größerer Entfernung (> 16 km). In Anbetracht der Tatsache, dass genetische Analysen Belege für Dismigration sowohl in historischer als auch in heutiger Zeit liefern können, bedeutet die beobachtete genetische Differenzierung nicht automatisch auch eine Umkehr des geschlechtstypischen Dismigrationsmusters auf regionaler Ebene. Wir vermuten, dass Weibchen aufgrund eines durch höhere Sterblichkeit der Weibchen verursachten Männchen-lastigen Geschlechterverhältnisses in der Population mit größerer Wahrscheinlichkeit einen Partner/ein Revier im näheren Umkreis finden. Zwar wandern Männchen mit geringerer Wahrscheinlichkeit ab; wenn sie es aber tun, müssen sie weitere Strecken zurücklegen, um ein passendes Revier oder eine Partnerin zu finden. Derartige Wanderungen würden die Ausbildung genetischer Unterschiede zwischen Männchenpopulationen verhindern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams RV, Burg TM (2015) Gene flow of a forest-dependent bird across a fragmented landscape. PLoS ONE 10:e0140938

    Article  PubMed  PubMed Central  Google Scholar 

  • Alcaide M, Serrano D, Tella JL, Negro JJ (2009) Strong philopatry derived from capture–recapture records does not lead to fine-scale genetic differentiation in lesser kestrels. J Anim Ecol 78:468–475

    Article  PubMed  Google Scholar 

  • Arguedas N, Parker P (2000) Seasonal migration and genetic population structure in house wrens. Condor 102:517–528

    Article  Google Scholar 

  • Arlt D, Pärt T (2008) Sex-biased dispersal: a result of a sex difference in breeding site availability. Am Nat 171:844–850

    Article  PubMed  Google Scholar 

  • Awade M, Candia-Gallardo C, Cornelius C, Metzger JP (2017) High emigration propensity and low mortality on transfer drives female-biased dispersal of Pyriglena leucoptera in fragmented landscapes. PLoS ONE 12:e0170493

    Article  PubMed  PubMed Central  Google Scholar 

  • Banks SC, Peakall R (2012) Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol Ecol 21:2092–2105

    Article  PubMed  Google Scholar 

  • Barrowclough G (1980) Gene flow, effective population sizes, and genetic variance components in birds. Evolution 34:789–798

    Article  PubMed  Google Scholar 

  • Bates JM (2000) Allozymic genetic structure and natural habitat fragmentation: data for five species of amazonian forest birds. Condor 102:770–783

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M et al (2012) Costs of dispersal. Biol Rev 87:290–312

    Article  PubMed  Google Scholar 

  • Bossart JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol Evol 13:202–206

    Article  CAS  PubMed  Google Scholar 

  • Botero-Delgadillo E, Quirici V, Poblete Y, Cuevas E, Kuhn S, Girg A et al (2017) Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird. Ecol Evol 7:8263–8378

    Article  Google Scholar 

  • Boulet M, Couturier S, Côté SD, Otto RD, Bernatchez L (2007) Integrative use of spatial, genetic, and demographic analyses for investigating genetic connectivity between migratory, montane, and sedentary caribou herds. Mol Ecol 16:4223–4240

    Article  CAS  PubMed  Google Scholar 

  • Brar RK, Schoenle LA, Stenzler LM, Halls ML, Vehrencamp SL, Lovette IJ (2007) Eleven microsatellite loci isolated from the banded wren (Thryothorus pleurostictus). Mol Ecol Notes 7:69–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brawn J, Robinson S (1996) Source-sink population dynamics may complicate the interpretation of long-term census data. Ecol 77:3–12

    Article  Google Scholar 

  • Brewer D (2001) Wrens, dippers and thrashers. Yale University Press, New Haven

    Google Scholar 

  • Brumfield RT, Capparella AP (1996) Historical diversification of birds in northwestern South America: a molecular perspective on the role of vicariant events. Evolution 50:1607–1624

    Article  PubMed  Google Scholar 

  • Burney CW, Brumfield RT (2009) Ecology predicts levels of genetic differentiation in Neotropical birds. Am Nat 174:358–368

    Article  PubMed  Google Scholar 

  • Cabe PR, Marshall KE (2001) Microsatellite loci from the house wren (Troglodytes aedon). Mol Ecol 1:155–156

    Article  CAS  Google Scholar 

  • Carro ME, Mermoz ME, Fernández GJ (2014) Factors affecting the probability of double brooding by Southern House Wrens. J Field Ornithol 85:227–236

    Article  Google Scholar 

  • Carro ME, Llambias PE, Fernández GJ (2017) Mate and territory availability affect breeding dispersal and divorce in a resident Southern House Wren Troglodytes aedon musculus population. Ibis 159:168–179

    Article  Google Scholar 

  • Cayuela H, Rougemont Q, Prunier JG, Moore JS, Clobert J, Besnard A, Bernatchez L (2018) Demographic and genetic approaches to study dispersal in wild animal populations: a methodological review. Mol Ecol 27:3976–4010

    Article  PubMed  Google Scholar 

  • Clarke AL, Sæther B-E, Røskaft E (1997) Sex biases in avian dispersal: a reappraisal. Oikos 79:429–438

    Article  Google Scholar 

  • Clobert J, Wolff JO, Nichols JD, Danchin E, Dhondt AA (2001) Introduction. In: Clobert J, Danchin E, Dhondt AA, Nichols D (eds) Dispersal. Oxford University Press, Oxford, pp xvii–xxi

    Google Scholar 

  • Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209

    Article  PubMed  Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Stith BM, Makarewich CA, Stenzler LM, Lovette IJ (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma coerulescens). Mol Ecol 17:1685–1701

    Article  CAS  PubMed  Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Lovette IJ (2010) Effects of habitat fragmentation on effective dispersal of Florida Scrub-Jays. Conserv Biol 24:1080–1088

    Article  PubMed  Google Scholar 

  • Dawson DA, Hanotte O, Greig C, Stewart IAK, Burke T (2000) Polymorphic microsatellites in the blue tit Parus caeruleus and their cross-species utility in 20 songbird families. Mol Ecol 9:1941–1944

    Article  CAS  PubMed  Google Scholar 

  • Delestrade A, McCleery RH, Perrins CM (1996) Natal dispersal in a heterogeneous environment: the case of the great tit in Wytham. Acta Oecol 17:519–529

    Google Scholar 

  • Double MC, Peakall R, Beck NR, Cockburn A (2005) Dispersal, philopatry, and infidelity: Dissecting local genetic structure in superb fairy-wrens (Malurus cyaneus). Evolution 59:626–635

    Google Scholar 

  • Drilling NE, Thompson CF (1988) Natal and breeding dispersal in house wrens (Troglodytes aedon). Auk 105:480–491

    Article  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, Princeton

    Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Article  Google Scholar 

  • Fernández GJ, Corral MG, Carro ME (2012) Variation in the alarm calls of Southern House Wrens (Troglodytes musculus). Emu 112:71–75

    Article  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Freed LA (1987) The long-term pair bond of tropical House Wrens: advantage or constraint? Am Nat 130:507–525

    Article  Google Scholar 

  • Goudet J (2002) FSTAT: a program to estimate and test gene diversities and fixation indices. Version 2.9.3.2. http://www.unil.ch/izea/softwares/fstat.html

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Evol Syst 13:1–21

    Article  Google Scholar 

  • Greenwood PJ, Harvey PH, Perrins CM (1979) The role of dispersal in the great tit (Parus major): the causes consequences and heritability of natal dispersal. J Anim Ecol 48:123–142

    Article  Google Scholar 

  • Hackett SJ, Rosenberg KV (1990) A comparison of phenotypic and genetic and differentiation in South American antwrens (Formicariidae). Auk 107:473–489

    Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578–581

    Article  Google Scholar 

  • Handley LJL, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578

    Article  Google Scholar 

  • Husby M, Slagsvold T (1992) Post-fledging behaviour and survival in male and female magpies Pica pica. Ornis Scand 23:483–490

    Article  Google Scholar 

  • Ibarra-Macias A, Robinson WD, Gaines MS (2011) Experimental evaluation of bird movements in a fragmented neotropical landscape. Biol Conserv 144:703–712

    Article  Google Scholar 

  • Johnson SL (2014) House wren (Troglodytes aedon). In: Poole A (ed) The birds of North America online, 2nd edn. Cornell Lab of Ornithology and American Ornithologists, Ithaca

  • Johnson ML, Gaines MS (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu Rev Ecol Evol Syst 21:449–480

    Article  Google Scholar 

  • Jones KS, Nakagawa S, Sheldon BC (2009) Environmental sensitivity in relation to size and sex in birds: meta-regression analysis. Am Nat 174:122–133

    Article  PubMed  Google Scholar 

  • Kendeigh SC (1941) Territorial and mating behavior of the House wren. Ill Biol Monogr 18:1–120

    Google Scholar 

  • Khimoun A, Eraud C, Ollivier A, Arnoux E, Rocheteau V et al (2016) Habitat specialization predicts genetic response to fragmentation in tropical birds. Mol Ecol 25:3831–3844

    Article  PubMed  Google Scholar 

  • Klauke N, Schaefer HM, Bauer M, Segelbacher G (2016) Limited dispersal and significant fine—scale genetic structure in a tropical montane parrot species. PLoS ONE 11:e0169165

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig WD, Van Vuren D, Hooge PH (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    Article  CAS  PubMed  Google Scholar 

  • Kroodsma DE, Brewer D (2005) Family troglodytidae (wrens). In: Del Hoyo J, Elliott A, Christie DA (eds) Handbook of the birds of the world: vol 10 Cuckoo-Shrikes to Thrushes. Lynx Edicions, Barcelona

  • LaBarbera K, Llambías PE, Cramer ERA, Schaming TD, Lovette IJ (2010) Synchrony does not explain extrapair paternity rate variation in Northern and Southern House Wrens. Behav Ecol 21:773–780

    Article  Google Scholar 

  • Lacoretz M (2018) Análisis de la estructura del ensamble de aves de los montes de tala (Celtis ehrenbergiana) del este de la provincia de Buenos Aires. PhD Thesis, University of Buenos Aires

  • Lewis PO, Zaykin D (2001) Genetic Data Analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). http://lewis.eeb.uconn.edu/lewishome/software.html

  • Llambías PE (2012) How do Southern House Wrens Troglodytes aedon musculus achieve polygyny? An experimental approach. J Ornithol 153:571–578

    Article  Google Scholar 

  • Llambías PE, Fernández GJ (2009) Effects of nestboxes on the breeding biology of Southern House Wrens Troglodytes aedon bonariae in the southern temperate zone. Ibis 151:113–121

    Article  Google Scholar 

  • Llambías PE, Carro ME, Fernández GJ (2015) Latitudinal differences in life-history traits and parental care in northern and southern temperate zone House Wrens. J Ornithol 156:933–942

    Article  Google Scholar 

  • Longmire JL, Lewis AK, Brown NC, Buckingham JM, Clark LM, Jones MD, Meincke LJ, Meyne J, Ratliff RL, Ray FA, Wagner RP, Moyzis RK (1988) Isolation and characterization of a highly polymorphic centromeric tandem repeat in the Family Falconidae. Genomics 2:14–24

    Article  CAS  PubMed  Google Scholar 

  • Lowe KW (1989) The Australian bird bander’s manual. National Parks and Wildlife Service, Commonwealth of Australia, Canberra

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Maness TJ, Anderson DJ (2013) Predictors of juvenile survival in birds. Ornithol Monog 78:1–55

    Article  Google Scholar 

  • Matthysen E (2012) Multicausality of dispersal: a review. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 3–18

    Chapter  Google Scholar 

  • Menger J, Henle K, Magnusson WE, Soro A, Husemann M, Schlegel M (2017) Genetic diversity and spatial structure of the Rufous-throated Antbird (Gymnopithys rufigula), an Amazonian obligate army-ant follower. Ecol Evol 7:2671–2684

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller SA, Dikes DD, Polesky HF (1988) A simple salting procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:12–15

    Article  Google Scholar 

  • Myers JH (1978) Sex ratio adjustment under food stress: maximization of quality or numbers of offspring? Am Nat 112:381–388

    Article  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. PNAS 105:19052–19059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortego J, Garcia-Navas V, Ferrer ES, Sanz JJ (2011) Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit, Cyanistes caeruleus. Anim Behav 82:131–137

    Article  Google Scholar 

  • Payne RB, Payne LL (1993) Breeding dispersal in Indigo Buntings: circumstances and consequences for breeding success and population structure. Condor 95:1–24

    Article  Google Scholar 

  • Peacock MM, Ray C (2001) Dispersal in pikas (Ochotona princeps): combining genetic and demographic approaches to reveal spatial and temporal patterns. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, New York, pp 43–56

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research- an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian Bush Rat, Rattus fuscipes. Evolution 57:1182–1195

    PubMed  Google Scholar 

  • Prugnolle F, De Meeûs T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Råberg L, Stjernman M, Nilsson JÅ (2005) Sex and environmental sensitivity in blue tit nestlings. Oecologia 145:496–503

    Article  PubMed  Google Scholar 

  • Ralph CJ, Geupel GR, Payle P, Martin TE, DeSante DF (1993) Handbook of field methods for monitoring landbirds. USDA For Serv Publ, PSW-GTR-144, Albany

  • Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution 49:1280–1283

    Article  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995b) Genepop, version 1.2: population genetics software for exact tests and ecumenicism. Heredity 86:248–249

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Tarwater CE, Ricklefs RE, Maddox JD, Brawn JD (2011) Pre-reproductive survival in a tropical bird and its implications for avian life histories. Ecology 92:1271–1281

    Article  PubMed  Google Scholar 

  • Temple HJ, Hoffman I, Amos W (2006) Dispersal, philopatry and intergroup relatedness: Fine-scale genetic structure in the white-breasted thrasher, Ramphocinclus brachyurus. Mol Ecol 15:3449–3458

    Article  CAS  PubMed  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    Article  CAS  PubMed  Google Scholar 

  • van Oosten HH, Mueller JC, Ottenburghs J, Both C, Kempenaers B (2016) Genetic structure among remnant populations of a migratory passerine, the Northern Wheatear Oenanthe oenanthe. Ibis 158:857–867

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vervoost F (1967) Las comunidades vegetales de la Depresión del Salado (provincia de Buenos Aires). INTA. La vegetación de la República Argentina. Serie Fitogeogeográfica 7:1–62

    Google Scholar 

  • Wang C, Rosenberg NA (2012) MicroDrop: a program for estimating and correcting for allelic dropout in nonreplicated microsatellite genotypes version 1.01. https://web.stanford.edu/group/rosen/berglab/microdrop.html

  • Weir B, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Whitlock MC (2001) Dispersal and the genetic properties of metapopulations. In: Danchin E, Dhont AA, Nichols JD (eds) Clobert J. Dispersal, Oxford University Press, New York pp, pp 273–298

    Google Scholar 

  • Whitlock MC, Mccauley DE (1999) Indirect measures of gene flow and migration: FST≠ 1/(4Nm+ 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Winkler DW, Wrege PH, Allen PE, Kast TL, Senesac P, Wasson MF, Sullivan PJ (2005) The natal dispersal of tree swallows in a continuous mainland environment. J Anim Ecol 74:1080–1090

    Article  Google Scholar 

  • Woltmann S, Kreiser BR, Sherry TW (2012) Fine-scale genetic population structure of an understory rainforest bird in Costa Rica. Conserv Genet 13:925–935

    Article  Google Scholar 

Download references

Acknowledgements

We thank Luis García and his wife Anahí for allowing us to work on his ranch in Buenos Aires, and Martha Busai, Mario Beade and families for logistical support. We also thank to Myriam Mermoz, Gabriela Corral and Rocio Busai for help us to collect the samples at field and to two anonymous reviewers for their constructive comments on the manuscript. We also thank two anonymous reviewers for their useful comments and suggestions on an earlier version of the manuscript. All methods used in the present study meet the ethical requirements for science research and comply with the current laws of the country in which they were performed.

Funding

This work was supported by the AFO (The Association of Field Ornithologists) through a Bergstrom award to MEC, and partially by grants of the University of Buenos Aires (UBACyT 20020090200117) and National Scientific and Technical Research Council–Argentina (CONICET-PIP112-200901-00011) to GJF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana E. Carro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

All methods used in the present study met the ethical requirements for science research and complied with the current laws of the country in which they were performed. This study and protocols we used were approved by the Dirección de Áreas Protegidas y Conservación de la Biodiversidad (Disp. 44 and 91) and the Organización Provincial para el Desarrollo Sustentable (OPDS) from Buenos Aires province, Argentina (Disp. 019/15).

Additional information

Communicated by C. G. Guglielmo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carro, M.E., Llambías, P.E., Mahler, B. et al. Contrasting patterns of natal dispersal of a south temperate House Wren population at local and regional scales. J Ornithol 162, 895–907 (2021). https://doi.org/10.1007/s10336-021-01887-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-021-01887-9

Keywords

Navigation