The wing morphology traits of resident birds that spend a large amount of time per day flying are similar to those of migrant birds

Abstract

The distances covered by migrant birds have been the subject of many studies. There are no estimates of the distances travelled by resident birds spending different amounts of time per day flying. Selection pressures similar to those due to migration are hypothesised to select for high aspect ratio wings, with low wing loading, among resident birds that spend a large amount of time per day flying. This reduces the energetic cost of flying and increases the birds’ flight range. The estimated distances that aerial foraging birds fly per day (n = 4 species), and per year (n = 3 species) ranged from 83 to 215 km, and from 38,666 to 44,716 km, respectively. To test the abovementioned hypothesis, the phylogenetically controlled and mass-adjusted wingspan, mean wing chord, wing area, wing loading and wing aspect ratio of 77 resident passerine birds, that spend different amounts of time per day flying, were compared with those of 11 migrants. A decrease in wing loading and an increase in the aspect ratio of the birds’ wings were significant predictors of an increase in the amount of time per day that the resident birds spent flying. No significant differences in the wing morphology traits between migrant, and resident birds that spend large amounts of time per day flying, were detected. The conclusion is that resident birds that spend a large amount of time per day flying have been subjected to the same selection pressures for energy-efficiency that have shaped aspects of the wing morphology traits of migrants.

Zusammenfassung

Die Flügelmorphologie von Standvögeln, die viel umherfliegen, ähnelt der von Zugvögeln

Die von Zugvögeln zurückgelegten Entfernungen waren schon Thema vieler Studien. Es gibt jedoch keine Schätzwerte zu den Strecken, welche von Standvögeln bewältigt werden, die unterschiedliche Anteile des Tages mit Fliegen zubringen. Hypothesen vermuten bei Standvögeln, welche einen Großteil des Tages umherfliegen, einen ähnlichen Selektionsdruck, wie er auch durch Zugverhalten entsteht, nämlich in Richtung von langen, schlanken Flügeln mit geringer Flächenbelastung. Dies reduziert die energetischen Kosten des Fluges und vergrößert das Fluggebiet der Vögel. Die geschätzten Strecken, welche von der Flugjagd lebende Vögel am Tag (n = vier Arten) und im Jahr (n = drei Arten) zurücklegen, lagen zwischen 83 und 215 km beziehungsweise zwischen 38,666 und 44,716 km. Um besagte Hypothese zu überprüfen, verglichen wir die bezüglich der Phylogenie kontrollierte sowie massenangepasste Flügelspannweite, mittlere Flügellänge, Flügelfläche, Flügelflächenbelastung und Flügelschlankheit von 77 nicht ziehenden Singvogelarten, welche unterschiedliche Anteile des Tages mit Fliegen verbringen, mit denen von elf Zugvogelarten. Eine Abnahme der Flächenbelastung und eine Zunahme der Streckung der Vogelflügel waren signifikante Zeichen für einen Anstieg des Zeitanteiles, den die Standvögel am Tag mit Fliegen zubrachten. Wir entdeckten keine signifikanten Merkmalsunterschiede in der Flügelmorphologie zwischen Zugvögeln und Nichtziehern, welche einen Großteil des Tages mit Fliegen verbrachten. Wir kommen zu dem Schluss, dass Standvögel, die viel Zeit mit Fliegen zubringen, denselben Selektionsdruck auf Energieeffizienz durchlaufen haben, der auch für die morphologischen Merkmale der Flügel von Zugvögeln mitverantwortlich ist.

This is a preview of subscription content, access via your institution.

Data availability

The data are made available.

References

  1. Alerstam T (2009) Flight by night or day? Optimal daily timing of bird migration. J Theor Biol 258:530

    PubMed  Article  Google Scholar 

  2. Alerstam T, Rosén M, Bäckman J, Ericson PGP, Hellgren O (2007) Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biol 5:e197

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Alerstam T, Bäckman J, Grönroos J, Olofsson P, Strandberg R (2019) Hypotheses and tracking results about the longest migration: the case of the arctic tern. Ecol Evol 9:9511–9531

    PubMed  PubMed Central  Article  Google Scholar 

  4. Arizaga J, Campos F, Alonso D (2006) Variations in wing morphology among subspecies might reflect different migration distances in Bluethroat. Ornis Fenn 83:162–169

    Google Scholar 

  5. Barton K (2020) MuMIn: multi-model inference. R package version 1.43.17

  6. Beintema AJ, Visser GH (1989) The effects of weather on time budgets and development of chicks of meadow birds. Ardea 77:181–192

    Google Scholar 

  7. Bensch S, Nielsen B (1999) Autumn migration speed of juvenile reed and sedge warblers in relation to date and fat loads. Condor 101:153–156

    Article  Google Scholar 

  8. Bird Life International and Nature Serve (2011) Bird species distribution maps of the world. Version 2.0. Bird Life International and Nature Serve, Cambridge, UK and Arlington, TX

    Google Scholar 

  9. Bowlin MS, Wikelski M (2008) Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLoS ONE 3(5):e2154

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Burnham KP, Anderson D, Huyvaert K (2010) AICc model selection in ecological and behavioural science: some background, observations and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  11. Calmaestra RG, Moreno E (2001) A phylogenetically-based analysis on the relationship between wing morphology and migratory behaviour in passeriformes. Ardea 89:407–416

    Google Scholar 

  12. Clark CJ (2011) Effects of tail length on an escape maneuver of the Red-billed Streamertail. J Ornithol 152:397–408

    Article  Google Scholar 

  13. Crawly MJ (2015) Statistics: an introduction using R, 2nd edn. John Wiley & Sons Ltd., United Kingdom, p 339

    Google Scholar 

  14. Earlé RA (1986) Time budget of South African cliff swallow during breeding. S Afr J Zool 21(1):57–59

    Google Scholar 

  15. Egevang C, Stenhouse IJ, Philips RA, Petersen A, Fo JW, Silk JRD (2010) Tracking of arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2081

    CAS  PubMed  Article  Google Scholar 

  16. Evans SW (2008) The conservation ecology and breeding biology of the blue swallow Hirundo atrocaerulea, Sundevall 1850, in South Africa. Unpublished PhD thesis

  17. Evans SW (2016) Aspects of the breeding biology of Angola Swallows Hirundo angolensis in Uganda. Biodivers Obs 7(48):1–6

    Google Scholar 

  18. Evans SW, Bouwman H (2010) Historical and current distribution, population size, and possible migration routes of the Blue Swallow Hirundo atrocaerulea in Africa. Bird Conserv Int 20:240–254

    Article  Google Scholar 

  19. Evans RR, Drickamer LC (1994) Flight speeds of birds determined using Doppler radar. The Wilson Bulletin 106:154–156

    Google Scholar 

  20. Evans SW, Monadjem A, Roxburgh L, McKechnie A, Baker L, Kizungu RB, Little IT, Matsvimbo F, Mulwa RK, Mwizabi D, Nalwanga D, Ndang’ang’a K, Combrink L (2015) Current conservation status of the Blue Swallow Hirundo atrocaerulea in Africa. Ostrich 86:195–211

    Article  Google Scholar 

  21. Gill RE Jr, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc B Biol Sci 276:447–457

    Article  Google Scholar 

  22. Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Article  Google Scholar 

  23. Greenewalt CH (1975) The flight of birds. Trans Am Philos Soc 65:1–67

    Article  Google Scholar 

  24. Grilli MG, Lambertucci SA, Therrien J-F, Bildstein KL (2017) Wing size but not wing shape is related to migratory behavior in a soaring bird. J Avian Biol 48:669–678

    Article  Google Scholar 

  25. Hadjikyriakou TG, Nwankwo EC, Virani MZ, Kirschel NG (2020) Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov Ecol 8:10

    PubMed  PubMed Central  Article  Google Scholar 

  26. Hails CJ (1979) A comparison of flight energetics in hirundines and other birds. Comp Biochem Physiol A Physiol 63:581–585

    Article  Google Scholar 

  27. Hall-Karlsson KSS, Fransson T (2008) How far do birds fly during one migration flight stage? Ringing Migr 24:95–100

    Article  Google Scholar 

  28. Hanmer DB (1976) Birds of the lower Zambezi. Southern Birds 2:1–66

    Google Scholar 

  29. Hedenström A (2010) Extreme endurance migration: what is the limit to non-stop flight? PLoS Biol 8(5):e1000362

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Hildén O, Saurola P (1982) Speed of autumn migration of birds ringed in Finland. Ornis Fenn 59:140–143

    Google Scholar 

  31. Hockey PAR, Dean WRJ, Ryan PG (eds) (2007) Roberts birds of Southern Africa, VIIth. Trustees of the John Voelcker Bird Book Fund, Cape Town

    Google Scholar 

  32. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

    CAS  PubMed  Article  Google Scholar 

  33. Johnston RD (1993) Effects of diet quality on the nestling growth of a wild insectivorous passerine, the house martin Delichon urbica. Funct Ecol 7:255–266

    Article  Google Scholar 

  34. Keith S, Urban EK, Fry CH (eds) (1992) Birds of Africa, vol 4. Academic Press, London

    Google Scholar 

  35. KleinHeerenbrink M (2017) afpt: tools for modelling of animal flight performance. R package version 1.0.0

  36. Korner-Nievergelt F, Roth T, von Felten S, Guélat J, Almasi B, Korner-Nievergelt P (2015) Bayesian data analysis in ecology using linear models with R, BUGS, and STAN. Elsevier Inc., Amsterdam

    Google Scholar 

  37. Leisler B, Winkler H (2003) Morphological Consequences of Migration in Passerines. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian Migration. Springer-Verlag, Berlin, pp 175–186

  38. Lockwood R, Swaddle JP, Rayner JMV (1998) Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J Avian Biol 29:273–292

    Article  Google Scholar 

  39. Maurer BA (1996) Energetics of avian foraging. In: Carey C (ed) avian energetics and nutritional ecology. Chapman & Hall, New York

    Google Scholar 

  40. Norberg UM (1990) Vertebrate flight mechanics, physiology, morphology, ecology and evolution, vol 27. Springer, Berlin, p 291

  41. Norberg RA (1994) Swallow tail streamer is a mechanical device for self deflection of tail leading edge, enhancing aerodynamic efficiency and flight manoeuvrability. Proc Roy Soc B Biol Sci 257:227–233

    Article  Google Scholar 

  42. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2018) caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1

  43. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    CAS  Article  Google Scholar 

  44. Pap PL, Osváth G, Sándor K, Vincze O, Bărbos L, Marton A, Nudds RL, Vágási CI (2015) Interspecific variation in the structural properties of flight feathers in birds indicates adaptation to flight requirements and habitat. Funct Ecol 29:746–757

    Article  Google Scholar 

  45. Paradis E (2012) Analysis of phylogenetics and evolution with R, 2nd edn. Springer, Heidelberg

    Google Scholar 

  46. Park KJ, Evans MR, Buchanan KL (2000) Assessing the aerodynamic effects of tail elongations in the house martin (Delichon urbica): implications for the initial selection pressures in hirundines. Behav Ecol Sociobiol 48:364–372

    Article  Google Scholar 

  47. Pelletier D, Guillemette M, Grandbois J-M, Butler PJ (2008) To fly or not to fly: high flight costs in a large sea duck do not imply an expensive lifestyle. Proc R Soc B Biol Sci 275:2117–2124

    Article  Google Scholar 

  48. Pennycuick CJ (1999) Measuring birds’ wings for flight performance calculations, 2nd edn. Boundary Layer Publications, Bristol

    Google Scholar 

  49. Pennycuick CJ (2001) Speeds and wingbeat frequencies of migrating birds compared with calculated benchmarks. J Exp Biol 204:3283–3294

    CAS  PubMed  Google Scholar 

  50. Pennycuick CJ (2008) Modelling the flying bird. Igarss 2014:1–5

    Google Scholar 

  51. Piersma T, Pérez-Tris J, Mouritsen H, Bauchinger U, Bairlein F (2005) Is there a migratory syndrome common to all migrant birds? Ann N Y Acad Sci 1046:282–293

    PubMed  Article  Google Scholar 

  52. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://CRAN.R-project.org/

  53. Rand McNally Portrait World Atlas (1998) Rand McNally & Company, New York

  54. Rappole JH (2013) The avian migrant: the biology of bird migration. Columbia University Press, New York

    Google Scholar 

  55. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x. http://CRAN.R-project.org/

  56. RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/

  57. Symonds MRE, Blomberg SP (2014) A primer on phylogenetic generalized least squares. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer-Verlag, Heidelberg

    Google Scholar 

  58. Turner A (2004) Family Hirundinidae (Swallows and Martins). In: Del Hoyo J, Elliot A, Christie DA (eds) Handbook of the birds of the world, vol 9 Cotingas to pipits and wagtails. Lynx Edicions, pp 602–685

  59. Turner A, Rose C (1989) A handbook to the Swallows and Martins of the world. Christopher Helm, London

    Google Scholar 

  60. Vágási CI, Pap PL, Vince O, Osváth G, Erritøe J, Møller AP (2016) Morphological adaptations to migration in birds. Evol Biol 43:48–59

    Article  Google Scholar 

  61. Vincze O, Vágási CI, Pap PL, Palmer C, Møller AP (2019) Wing morphology, flight style and migration distance predict accumulated fuel load in birds. J Exp Biol 222:jeb183517

    PubMed  Article  Google Scholar 

  62. Wei T, Simko VV (2017) R package “corrplot”: visualization of a correlation matrix (version 0.84)

  63. Westerterp KR, Bryant DM (1984) Energetics of free existence in swallows and martins (Hirundinidae) during breeding: a comparative study using doubly labelled water. Oecologia 62:376–381

    PubMed  Article  Google Scholar 

  64. Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29

    Google Scholar 

  65. Wickham H, François R, Henry L, Müller K (2019) dplyr: a grammar of data manipulation. R package version 0.8.0.1

  66. Winkler H, Leisler B (1992) On the ecomorphology of migrants. Ibis 134:21–28

    Article  Google Scholar 

  67. Wolak ME, Fairbairn DJ, Paulsen YR (2012) Guidelines for estimating repeatability. Methods Ecol Evol 3:129–137

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to all the landowners who gave me permission to catch and ring birds on their property. Thank you to Jean Jonker for shooting the Cape Crow for me, and to Hein and Liesl Jonker for granting me permission to shoot the crow and catch and ring birds on their farm. Thank you to Henk Bouwman for his support and supervision during my post-graduate studies, and subsequently, and for assisting me in acquiring the training and the equipment needed to ring birds. Thank you to the late William Scott, and Sam de Beer for training me as a bird ringer in what feels like a life time ago.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven W. Evans.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest regarding the research and publication of this article.

Ethics

Cape Nature, Western Cape Province, South Africa, permit (CN41-58-10114) “to hunt with prohibited hunting method for bird ringing purposes”, and the hunting permit for the Cape Crow (CN42-98-20322). South African Bird Ringing (SAFRING) registered bird ringer no. 189.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Hedenström.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 370 KB)

Supplementary file2 (XLS 110 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evans, S.W. The wing morphology traits of resident birds that spend a large amount of time per day flying are similar to those of migrant birds. J Ornithol (2021). https://doi.org/10.1007/s10336-021-01870-4

Download citation

Keywords

  • Flight time per day
  • Wing loading
  • Wing aspect ratio
  • Wingspan
  • Mass
  • Migration
  • Allometry