Using individual capture data to reveal large-scale patterns of social association in birds

Abstract

Studying social behavior has traditionally been labor-intensive, limiting the scale of datasets and therefore the questions that can be asked. We explore the potential for large individual capture datasets, which arise from population monitoring projects such as bird banding stations, to fill this gap. Using a 23-year dataset from San Jose, CA, comprised of six passerine bird species from four families, we constructed social networks to investigate whether age-, sex-, and taxon-related patterns of social association could be detected. We found support for age-related patterns in social behavior and patterns of overall species differences that agreed with past work. We then explored interactions between species and patterns in social behavior over time, two questions that have historically been difficult to address. We detected positive assortment by taxon, and we observed a significant multi-decade decrease in mean degree. Using an agent-based simulation to allow us to independently vary behavior and aspects of the capture dataset, we found that sample size and capture probability affected the metrics that were intended to only measure social behavior, but that these confounding effects could be effectively managed in many cases. We conclude that while analysis of individual capture datasets should not replace more intensive studies of social behavior, the utilization of these data could considerably expand the scope of our knowledge of social behavior, particularly at large temporal scales and for species that are difficult to observe.

Zusammenfassung

Verwendung individueller Fangdaten zur Aufdeckung von Langzeitmustern in sozialen Verbänden bei Vögeln

Die Untersuchung des Sozialverhaltens ist traditionell sehr arbeitsintensiv, was den Umfang von Datensätzen und somit die Fragen einschränkt, die gestellt werden können. Wir untersuchten das Potential großer, individueller Fangdatensätze, welche aus dem Populationsmonitoring wie z. B. an Vogelberingungsstationen stammen, um derartige Wissenslücken zu schließen. Anhand eines Datensatzes über 23 Jahre aus San José, Kalifornien, der sechs Singvogelarten aus vier Familien umfasst, erstellten wir ein Netzwerk der Sozialstruktur, um zu untersuchen, ob es alters-, geschlechts- und taxonbezogene Muster bei Sozialverbänden gibt. Wir fanden Hinweise auf ein altersbedingtes Muster im Sozialverhalten sowie auf ein Muster allgemeiner artspezifischer Unterschiede, die mit früheren Studien übereinstimmen. Wir untersuchten weiterhin Interaktionen zwischen Arten und Mustern im Sozialverhalten über die Zeit, zwei Aspekte, die in der Vergangenheit nur schwer zu beantworten waren. Wir fanden eine positive assortative Gruppierung nach Taxa und beobachteten eine signifikante jahrzehntelange Abnahme des mittleren Grades der sozialen Vernetzung. Durch die Verwendung einer agentenbasierten Simulation, die es uns ermöglichte, das Verhalten und die Aspekte des Fangdatensatzes unabhängig voneinander zu variieren, fanden wir heraus, dass die Stichprobengröße und die Fangwahrscheinlichkeit die Maße beeinflussten, die nur zur Messung des Sozialverhaltens gedacht waren. Doch mit diesen störenden Auswirkungen konnte in vielen Fällen effektiv umgegangen werden. Zusammenfassend lässt sich sagen, dass die Analysen der individuellen Fangdatensätze zwar keine intensiveren Studien des Sozialverhaltens ersetzen sollten, die Verwendung dieser Daten jedoch den Umfang unseres Wissens über das Sozialverhalten erheblich erweitern können, vor allem über große Zeiträume und für Arten, die schwierig zu beobachten sindDie Untersuchung des Sozialverhaltens ist traditionell sehr arbeitsintensiv, was den Umfang von Datensätzen und somit die Fragen einschränkt, die gestellt werden können. Wir untersuchten das Potential großer, individueller Fangdatensätze, welche aus dem Populationsmonitoring wie z. B. an Vogelberingungsstationen stammen, um derartige Wissenslücken zu schließen. Anhand eines Datensatzes über 23 Jahre aus San José, Kalifornien, der sechs Singvogelarten aus vier Familien umfasst, erstellten wir ein Netzwerk der Sozialstruktur, um zu untersuchen, ob es alters-, geschlechts- und taxonbezogene Muster bei Sozialverbänden gibt. Wir fanden Hinweise auf ein altersbedingtes Muster im Sozialverhalten sowie auf ein Muster allgemeiner artspezifischer Unterschiede, die mit früheren Studien übereinstimmen. Wir untersuchten weiterhin Interaktionen zwischen Arten und Mustern im Sozialverhalten über die Zeit, zwei Aspekte, die in der Vergangenheit nur schwer zu beantworten waren. Wir fanden eine positive assortative Gruppierung nach Taxa und beobachteten eine signifikante jahrzehntelange Abnahme des mittleren Grades der sozialen Vernetzung. Durch die Verwendung einer agentenbasierten Simulation, die es uns ermöglichte, das Verhalten und die Aspekte des Fangdatensatzes unabhängig voneinander zu variieren, fanden wir heraus, dass die Stichprobengröße und die Fangwahrscheinlichkeit die Maße beeinflussten, die nur zur Messung des Sozialverhaltens gedacht waren. Doch mit diesen störenden Auswirkungen konnte in vielen Fällen effektiv umgegangen werden. Zusammenfassend lässt sich sagen, dass die Analysen der individuellen Fangdatensätze zwar keine intensiveren Studien des Sozialverhaltens ersetzen sollten, die Verwendung dieser Daten jedoch den Umfang unseres Wissens über das Sozialverhalten erheblich erweitern können, vor allem über große Zeiträume und für Arten, die schwierig zu beobachten sind

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

All banding data have been deposited with the United States Fish and Wildlife Service Bird Banding Lab in accordance with bird banding regulations. Code for the simulation is available in the supplementary material.

References

  1. Aplin LM, Firth JA, Farine DR, Voelki B, Crates RA, Culina A, Garroway CJ, Hinde CA, Kidd LR, Psorakis I, Milligan ND, Radersma R, Verhelst BL, Sheldon BC (2015) Consistent individual differences in the social phenotypes of wild great tits, Parus major. Anim Behav 108:117–127

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Arcese P, Sogge MK, Marr AB, Patten MA. 2002. Song Sparrow (Melospiza melodia), version 2.0. In The Birds of North America (Poole AF and Gill FB, Eds). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bna.704

  3. Baker MC, Belcher CS, Deutsch LA, Sherman GL, Thompson DB (1981) Foraging success in junco flocks and the effects of social hierarchy. Anim Behav 29:137–142

    Article  Google Scholar 

  4. Bejder L, Fletcher D, Bräger S (1998) A method for testing association patterns of social animals. Anim Behav 56(3):719–725

    CAS  PubMed  Article  Google Scholar 

  5. Bonter DN, Brooks EW, Donovan TM (2008) What are we missing with only ground-level mist nets? Using elevated nets at a migration stopover site. J Field Ornithol 79(3):314–320

    Article  Google Scholar 

  6. Brown DR, Stouffer PC, Strong CM (2000) Movement and territoriality of wintering hermit thrushes in southeastern Louisiana. The Wilson Bulletin 112(3):347–353

    Article  Google Scholar 

  7. Buckley FG, Buckley PA (1974) Comparative feeding ecology of wintering adult and juvenile royal terns (Aves: Laridae, Sterninae). Ecology 55(5):1053–1063

    Article  Google Scholar 

  8. Butts CT (2008a) network: a Package for Managing Relational Data in R. J Stat Softw 24(2):1–36

    PubMed  PubMed Central  Article  Google Scholar 

  9. Butts CT (2008b) Social network analysis with sna. J Stat Softw 24(6):1–51

    PubMed  PubMed Central  Article  Google Scholar 

  10. Clutton-Brock T, Sheldon BC (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25(10):562–573

    PubMed  Article  Google Scholar 

  11. Cornell HN, Marzluff JM, Pecoraro S (2012) Social learning spreads knowledge about dangerous humans among American crows. Proc Royal Soc B 279:499–508

    Article  Google Scholar 

  12. Croft DP, Krause J, James R (2004) Social networks in the guppy (Poecilia reticulata). Proc Royal Soc London B 271:S516–S519

    Article  Google Scholar 

  13. Dellinger R, Wood PB, Jones PW, Donovan TM. 2012. Hermit Thrush (Catharus guttatus), version 2.0. In The Birds of North America (Poole AF and Gill FB, Eds). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bna.261

  14. Ekman J (1989) Ecology of non-breeding social systems of Parus. Wilson Bulletin 101(2):263–288

    Google Scholar 

  15. Farine DR (2013) Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol Evol 4(12):1187–1194

    Article  Google Scholar 

  16. Farine DR (2014) Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Anim Behav 89:141–153

    Article  Google Scholar 

  17. Farine DR (2017) A guide to null models for animal social network analysis. Methods Ecol Evol 8(10):1309–1320

    PubMed  PubMed Central  Article  Google Scholar 

  18. Farine DR, Whitehead H (2015) Constructing, conducting and interpreting animal social network analysis. J Anim Ecol 84:1144–1163

    PubMed  PubMed Central  Article  Google Scholar 

  19. Favreau F, Goldizen AW, Fritz H, Pays O (2018) Food supply fluctuations constrain group sizes of kangaroos and in turn shape their vigilance and feeding strategies. Anim Behav 135:165–176

    Article  Google Scholar 

  20. Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol 65(1):47–55

    PubMed  Article  Google Scholar 

  21. Foster WA, Treherne JE (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293:466–467

    Article  Google Scholar 

  22. Goodson JL, Wilson LC, Schrock SE (2012) To flock or fight: neurochemical signatures of divergent life histories in sparrows. Proc Nation Acad Sci 109(S1):10685–10692

    CAS  Article  Google Scholar 

  23. Griesser M, Suzuki TN (2017) Naive juveniles are more likely to become breeders after witnessing predator mobbing. Am Nat 189(1):58–66

    PubMed  Article  Google Scholar 

  24. Griffin AS (2004) Social learning about predators: A review and prospectus. Learn Behav 32(1):131–140

    CAS  PubMed  Article  Google Scholar 

  25. Guzy MJ, Ritchison G. 1999. Common Yellowthroat (Geothlypis trichas), version 2.0. In The Birds of North America (Poole AF and Gill FB, Eds). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bna.448

  26. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  27. Hoppitt WJ, Farine DR (2018) Association indices for quantifying social relationships: how to deal with missing observations of individuals or groups. Anim Behav 136:227–238

    Article  Google Scholar 

  28. Hunt PD, Flaspohler DJ. 1998. Yellow-rumped Warbler (Setophaga coronata), version 2.0. In The Birds of North America (Poole AF and Gill FB, Eds). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bna.376

  29. Jormalainen V, Tuomi J (1989) Sexual differences in habitat selection and activity of the colour polymorphic isopod Idotea baltica. Anim Behav 38:576–585

    Article  Google Scholar 

  30. Ketterson ED, Nolan V (1979) Seasonal, annual, and geographic variation in the sex ratio of wintering populations of dark-eyed juncos (Junco hyemalis). Auk 96(3):532–536

    Google Scholar 

  31. King JR, Farner DS, Mewaldt LR (1965) Seasonal sex and age ratios in populations of the White-crowned Sparrows of the race gambelii. Condor 67:489–504

    Article  Google Scholar 

  32. Kohn GM, King AP, Scherschel LL, West MJ (2011) Social niches and sex assortment: uncovering the developmental ecology of brown-headed cowbirds Molothrus ater. Anim Behav 82(5):1015–1022

    Article  Google Scholar 

  33. Liao Z, Sosa S, Wu C, Zhang P (2018) The influence of age on wild rhesus macaques’ affiliative social interactions. Am J Primatol 80:e22733

    Article  Google Scholar 

  34. Lusseau D, Newman MEJ (2004) Identifying the role that animals play in their social networks. Proc Royal Soc B 271:S477–S481

    Article  Google Scholar 

  35. McDonald DB (2007) Predicting fate from early connectivity in a social network. Proc Natl Acad Sci 104(26):10910–10914

    CAS  PubMed  Article  Google Scholar 

  36. Mueller T, O’Hara RB, Converse SJ, Urbanek RP, Fagan WF (2013) Social learning of migratory performance. Science 341:999–1002

    CAS  PubMed  Article  Google Scholar 

  37. Norment CJ, Hendricks P, Santonocito R. 1998. Golden-crowned Sparrow (Zonotrichia atricapilla), version 2.0. In The Birds of North America (Poole AF and Gill FB, Eds). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bna.352

  38. Nunn CL, Jordán F, McCabe CM, Verdolin JL, Fewell JH (2015) Infectious disease and group size: more than just a numbers game. Philosoph Trans Royal Soc B 370:20140111

    Article  Google Scholar 

  39. Pagani-Núñez E, Barnett CRA, Senar JC (2019) Age and sex differences in niche use at molt and its effect on plumage coloration characteristics in a bird. Curr Zool 65:251–260

    PubMed  Article  Google Scholar 

  40. Pardieck K, Waide RB (1992) Mesh size as a factor in avian community studies using mist nets. J Field Ornithol 63:250–255

    Google Scholar 

  41. Pyle P (1997) Identification guide to North American birds: a compendium of information on identifying, ageing, and sexing “near-passerines” and passerines in the hand. Slate Creek Press, Bolinas, CA

    Google Scholar 

  42. R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  43. Rivera-Cáceres KD, Quirós-Guerrero E, Araya-Salas M, Templeton CN, Searcy WA (2018) Early development of vocal interaction rules in a duetting songbird. Royal Soc Open Sci 5(2):171791

    Article  Google Scholar 

  44. Roberts G (1996) Why individual vigilance declines as group size increases. Anim Behav 51(5):1077–1086

    Article  Google Scholar 

  45. Schoepf I, Schradin C (2012) Better off alone! Reproductive competition and ecological constraints determine sociality in the African striped mouse (Rhabdomys pumilio). J Anim Ecol 81:649–656

    PubMed  Article  Google Scholar 

  46. Seghers BH (1974) Schooling behavior in the guppy (Poecilia reticulata): an evolutionary response to predation. Evolution 28(3):486–489

    PubMed  Google Scholar 

  47. Shizuka D, Chaine AS, Anderson J, Johnson O, Laursen IM, Lyon BE (2014) Across-year social stability shapes network structure in wintering migrant sparrows. Ecol Lett 17:998–1007

    PubMed  Article  Google Scholar 

  48. Sloane SA. 2001. Bushtit (Psaltriparus minimus), version 2.0. In The Birds of North America (Poole AF and Gill FB, Eds). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bna.598

  49. Smolla M, Alem S, Chittka L, Shultz S (2016) Copy-when-uncertain: bumblebees rely on social information when rewards are highly variable. Biol Let 12:20160188

    Article  Google Scholar 

  50. Spiegel O, Sih A, Leu ST, Bull CM (2018) Where should we meet? Mapping social network interactions of sleepy lizards shows sex-dependent social network structure. Anim Behav 136:207–215

    Article  Google Scholar 

  51. Sridhar H, Shanker K (2014) Using intra-flock association patterns to understand why birds participate in mixed-species foraging flocks in terrestrial habitats. Behav Ecol Sociobiol 68(2):185–196

    Article  Google Scholar 

  52. Teitelbaum CS, Converse SJ, Mueller T (2017) Birds choose long-term partners years before breeding. Anim Behav 134:147–154

    Article  Google Scholar 

  53. White DJ, Gersick AS, Snyder-Mackler N (2012) Social networks and the development of social skills in cowbirds. Philsoph Trans Royal Soc B 367:1892–1900

    Article  Google Scholar 

  54. Whitehead H, Dufault S (1999) Techniques for analyzing vertebrate social structure using identified individuals: review and recommendations. Adv Study Behav 28:33–74

    Article  Google Scholar 

  55. Whiteside MA, van Horik JO, Langley EJG, Beardworth CE, Laker PR, Madden JR (2017) Differences in social preference between the sexes during ontogeny drive segregation in a precocial species. Behav Ecol Sociobiol 71:103

    PubMed  PubMed Central  Article  Google Scholar 

  56. Wilensky U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Download references

Acknowledgements

D. Wenny, D. Farine, O. Spiegel, M. Bee, N. Sapir, and anonymous reviewers provided feedback on the manuscript. The data used in this study are the result of work by hundreds of volunteers at Coyote Creek Field Station over decades. The field station itself exists thanks to the donors who support the San Francisco Bay Bird Observatory.

Author information

Affiliations

Authors

Contributions

KL and JCS designed the study and collected and managed the data; KL carried out analyses and wrote the manuscript; KL and JCS edited the manuscript.

Corresponding author

Correspondence to Katie LaBarbera.

Ethics declarations

Birds were handled under the San Francisco Bay Bird Observatory's Coyote Creek banding station permit and according to the banding station's protocols, which prioritize the welfare of the birds. All data collection complied with the laws of the United States of America, where this study was performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by C. G. Guglielmo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 185 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

LaBarbera, K., Scullen, J.C. Using individual capture data to reveal large-scale patterns of social association in birds. J Ornithol (2021). https://doi.org/10.1007/s10336-021-01863-3

Download citation

Keywords

  • Age
  • Agent-based model
  • Bird banding
  • Passerellidae
  • Social behavior
  • Social network