Skip to main content

Advertisement

Log in

Migration strategy, site fidelity and population size of the globally threatened Sociable Lapwing Vanellus gregarius

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Population declines of the critically endangered Sociable Lapwing are probably due to high mortality along its migration routes or on its wintering grounds, both of which are very poorly known. We therefore undertook a long-term study of the species’ movements using satellite tagging, colour-ringing, targeted field surveys and a database of historical and recent sightings. We identified two migration flyways from the breeding grounds in Kazakhstan; a longer western route (c. 5200 km) west through southern Russia, then south through the Caucasus to wintering areas in Saudi Arabia and eastern Sudan, and a shorter eastern route (c. 2800 km) south through Turkmenistan and Uzbekistan to wintering areas in Pakistan and north-western India. The migration strategy is characterised by infrequent long-distance movements followed by often lengthy stopovers in a small number of staging areas that are used consistently across years, and by high individual and low between-individual consistency in spatial and temporal patterns of movement. At least four main autumn stopover areas and one additional spring stopover area were identified along the western route, but only one autumn and one spring staging area along the eastern route. There was no relationship between latitude or longitude of breeding and the migration route used, and the same breeding colonies could contain breeding adults and produce chicks of both flyway populations, suggesting that no clear migratory divide exists within the breeding range. Sociable Lapwings spend around a third of the year on their breeding grounds, a third on their wintering grounds and a third moving between them. Birds were highly faithful to passage and wintering sites, but showed low fidelity to breeding sites. Stopover areas and wintering sites are usually located at the interface of dry steppe-like or desert habitats and agriculture, particularly irrigated cropland along rivers. This species selects agricultural habitats throughout its entire life cycle, and its heavy reliance on some of the world’s most anciently cultivated regions suggests that this synanthropic relationship may have evolved over millennia. The recent emergence of irrigated agriculture in the deserts of Arabia allows birds using the western route to winter far north of their previous wintering range and maybe to spread into new wintering areas along the coasts of the Arabian Gulf. The concentration of large numbers of birds at a small number of traditional stopover areas offers the opportunity to quantify the global population size, which we estimate at around 24,000 individuals (95% CL 13,700–55,560). However, it also makes the species particularly vulnerable to hunting and small-scale habitat change. Illegal hunting along the western flyway is identified as the most likely driver of the species’ decline.

Zusammenfassung

Zugstrategie, Ortstreue und Weltbestand des global gefährdeten Steppenkiebitzes Vanellus gregarius.

Populationsrückgänge des vom Aussterben bedrohten Steppenkiebitzes wurden vermutlich durch hohe Mortalität während des Zuges und im Winterquartier verursacht. Die Lage von Zugrouten und Winterquartieren war bisher kaum bekannt. Wir haben deshalb eine Langzeitstudie (Jahre 2007 bis 2015) des Zugverhaltens unter Nutzung von Satellitentelemetrie und Farbberingung durchgeführt, ergänzt durch direkte Zählungen an Rastplätzen und der Erstellung einer Datenbank historischer wie aktueller Nachweise. Wir konnten zwei Zugrouten identifizieren: eine längere (ca. 5200 km) führte die Vögel von den Brutgebieten in Kasachstan durch Südrussland nach Westen, dann nach Süden über den Kaukasus in Überwinterungsgebiete in Saudi-Arabien und dem östlichen Sudan. Eine kürzere östliche Route (ca. 2800 km) verlief durch Turkmenistan und Usbekistan zu Winterquartieren in Pakistan und dem nordwestlichen Indien. Die Zugstrategie war charakterisiert durch wenige, lange Nonstop-Flüge, gefolgt von längeren Zugpausen in wenigen Rastgebieten, die jeweils über den gesamten Untersuchungszeitraum genutzt wurden. Die Muster in der Nutzung der Zugstrecken und Rastplätze waren auf der Individuenebene sehr konsistent, nicht aber zwischen Individuen. Auf der Westroute identifizierten wir mindestens vier Herbstrastplätze und ein zusätzliches Frühjahrsrastgebiet, auf der Ostroute nur je ein Frühjahrs- und Herbstrastgebiet. Wir fanden keinen Zusammenhang zwischen dem Längen- oder Breitengrad des Brutplatzes der Vögel und der genutzten Zugroute, und Alt- wie Jungvögel derselben Brutkolonie nutzten sowohl die West- wie auch die Ostroute. Dies deutet darauf hin, dass es keine klare Zugscheide bei dieser Art gibt. Die besenderten Vögel verbrachten etwa je ein Drittel des Jahreszyklus im Brutgebiet, auf dem Zug und im Winterquartier. Die Ortstreue an den Zugrast- und Überwinterungsplätzen war sehr hoch, dagegen war die Brutortstreue sehr niedrig. Zugrast- und Überwinterungsplätze zeichneten sich durch unmittelbare Nachbarschaft von trockenen Steppen- oder Wüstenflächen und landwirtschaftlichen Flächen (insbesondere bewässerte Felder entlang von Flüssen) aus. Der Steppenkiebitz nutzt während des gesamten Jahreszyklus landwirtschaftliche Flächen, darunter in den ältesten kultivierten Gebieten der Welt. Dieses synanthrope Verhalten könnte sich daher über Jahrhunderte entwickelt haben. Die erst kürzliche erfolge Kultivierung der arabischen Wüste mittels Bewässerungsfeldbau erlaubt es den Vögeln, weit nördlich des bisherigen Areals zu überwintern, und vielleicht auch die beobachtete Erschließung neuer Überwinterungsgebiete entlang des Arabischen Golfs. Die Konzentration großer Bestände der Art an sehr wenigen Zugrastplätzen ermöglichte uns, einen Weltbestand von etwa 24.000 Individuen (95%-Konfidenzintervall: 13.700 bis 55.560 Individuen) abzuschätzen. Diese Konzentration macht die Art aber auch besonders anfällig für Jagd und kleinräumige Habitatänderungen. Wir identifizierten insbesondere illegale Jagd auf dem westlichen Zugweg als wahrscheinlichste Rückgangsursache.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available from the authors.

Code availability

Code is available from the authors.

References

  • Aebischer NJ (1999) Multi-way comparisons and generalized linear models of nest success: extensions of the Mayfield method. Bird Study 46(Suppl. 1):S22–S31

    Article  Google Scholar 

  • Alerstam T, Gudmundsson GA (1999) Migration patterns of tundra birds: tracking radar observations along the northeast passage. Arctic 52:346–371

    Article  Google Scholar 

  • Ashoori A, Khani A, Ghasemi M, Rabiee K, Mansoori M, Musavi SB, Hashemi A, Eskandari F (2013) Recent records and status of the Sociable Lapwing Vanellus gregarius in Iran. Sandgrouse 35:14–19

    Google Scholar 

  • Asswad NG (2014) Sociable Lapwing Vanellus gregarius in Syria during 2011: status, presence, habitat survey. Sandgrouse 36:2–7

    Google Scholar 

  • Azimov N, Iankov P, Kashkarov R, Koshkin M, Rustamov E, Soldatov V, Ten A, Veyisov A (2018) Further surveys at a globally important staging site for migrating Sociable Lapwings Vanellus gregarius in Turkmenistan and Uzbekistan. Sandgrouse 40:38–50

    Google Scholar 

  • Babbington J, Roberts P (2017) An update on the wintering status of Sociable Lapwings Vanellus gregarius in Saudi Arabia with a new wintering location in the Eastern province. Sandgrouse 39:172–176

    Google Scholar 

  • Battley PF (2006) Consistent annual schedules in a migratory shorebird. Biol Lett 2:517–520

    Article  PubMed  PubMed Central  Google Scholar 

  • BirdLife International (2001) Threatened birds of Asia: the BirdLife International Red Data Book. BirdLife International, Cambridge, UK

    Google Scholar 

  • BirdLife International (2020) Species factsheet: Vanellus gregarius. Downloaded from http://www.birdlife.org. Accessed on 25 Nov 2020

  • Biricik M (2009) Unexpectedly large number of Sociable Lapwings, Vanellus gregarius, on autumn migration in Turkey and some remarks on the stopover site. Sandgrouse 31:15–17

    Google Scholar 

  • Boyd JD, Brightsmith DJ (2013) Error properties of Argos satellite telemetry locations using least qquares and Kalman filtering. PLoS ONE 8:e63051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochet A-L, Van Den Bossche W, Jbour S, Ndang’Ang’A PK, Jones VR et al (2016) Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv Int 26:1–28

    Article  Google Scholar 

  • Brochet A-L, Jbour S, Sheldon RD, Porter R, Jones VR et al (2019a) A preliminary assessment of the scope and scale of illegal killing and taking of wild birds in the Arabian peninsula, Iran and Iraq. Sandgrouse 41:154–175

    Google Scholar 

  • Brochet A-L, Van Den Bossche W, Jones VR, Arnardottir H, Damoc D et al (2019b) Illegal killing and taking of birds in Europe outside the Mediterranean: assessing the scope and scale of a complex issue. Bird Conserv Int 29:10–40

    Article  Google Scholar 

  • Campbell O, Smiles M (2019) Notable breeding records from a recently established anthropogenic, agricultural, site in the United Arab Emirates. Sandgrouse 41:18–31

    Google Scholar 

  • Combreau O, Riou S, Judas J, Lawrence M, Launay F (2011) Migratory pathways and connectivity in Asian houbara bustards: evidence from 15 years of satellite tracking. PLoS ONE 6:e20570–e20570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramp S (ed) (1983) The Birds of the Western Palearctic, vol 3. Oxford University Press, Oxford, UK

    Google Scholar 

  • Cresswell W (2014) Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510

    Article  Google Scholar 

  • Dara A, Baumann M, Hölzel N, Hostert P, Kamp J, Müller D, Ullrich B, Kuemmerle T (2020) Post-soviet land-use change affected fire regimes on the Eurasian steppes. Ecosystems 23:943–956

    Article  CAS  Google Scholar 

  • de Juana E (2011) The Sociable Lapwing in Europe. Br Birds 104:84–90

    Google Scholar 

  • Donald PF, Azimov NN, Ball E, Green RE, Kamp J et al (2016) A globally important migration staging site for Sociable Lapwings Vanellus gregarius in Turkmenistan and Uzbekistan. Sandgrouse 38:82–95

    Google Scholar 

  • Dubinin M, Lushchekina A, Radeloff VC (2010) Performance and accuracy of Argos transmitters for wildlife monitoring in Southern Russia. Eur J Wildl Res 56:459–463

    Article  Google Scholar 

  • Duijns S, Anderson AM, Aubry Y, Dey A, Flemming SA et al (2019) Long-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post-breeding. Sci Rep 9:9420

    Article  PubMed  PubMed Central  Google Scholar 

  • Eichhorn G, Khrokov VV (2002) Decline in breeding sociable plover Chettusia gregaria in the steppes of Naurzum and Korgalzhyn, Kazakhstan. Sandgrouse 24:22–27

    Google Scholar 

  • Fedosov V, Malovichko L, Koshkin M, Sheldon RD (2020) Long-term decline in the number of Sociable Lapwings Vanellus gregarius at the key migration stopover site of the Manych depression in south-western Russia. Sandgrouse 42:259–269

    Google Scholar 

  • Field RH, Gordon JJ, Koshkin M, Field KM, Gordon O, Kucheryavaya N, Fedosov V, Malovichko L (2007) The Chagraiskoje Reservoir area of Stavropol Region, SW Russia, harbours significant numbers of migrating Sociable Lapwing Vanellus gregarius. Wader Study Group Bull 112:60–64

    Google Scholar 

  • Gill JA, Alves JA, Gunnarsson TG (2019) Mechanisms driving phenological and range change in migratory species. Philos Trans Royal Society B: Biol Sci 374:20180047

    Article  Google Scholar 

  • Hahn S, Alves JA, Bedev K, Costa JS, Emmenegger T, Schulze M, Tamm P, Zehtindjiev P, Dhanjal-Adams KL (2020) Range-wide migration corridors and non-breeding areas of a northward expanding Afro-Palaearctic migrant, the European Bee-eater Merops apiaster. Ibis 162:345–355

    Article  Google Scholar 

  • Heiss M, Gauger K, Himmel C, Fetting P, Haraldsson TA, Caucal G, Fərəcli Z, Sultanov E (2020) The development of the Besh Barmag Bird Migration Count in Azerbaijan and its importance for the monitoring of Eurasian migrant birds. Sandgrouse 42:29–45

    Google Scholar 

  • Hofland R, Keijl GO. 2008. Syrian Sociable Lapwing survey, 18 February-5 March 2007. WIWO-Report 85. Beek-Ubbergen, The Netherlands

  • Jung M, Dahal PR, Butchart SHM, Donald PF, de Lamo X, Lesiv M, Kapos V, Rondinini C, Visconti P (2020) A global map of terrestrial habitat types. Nature-Scientific Data 7:256

  • Kamp J, Sheldon RD, Koshkin MA, Donald PF, Biedermann R (2009) Post-Soviet steppe management causes pronounced synanthropy in the globally threatened Sociable Lapwing Vanellus gregarius. Ibis 151:452–463

    Article  Google Scholar 

  • Kamp J, Koshkin MA, Sheldon R (2010) Historic breeding of Sociable Lapwing (Vanellus gregarius) in Xinjiang. Chin Birds 1:70–73

    Article  Google Scholar 

  • Kamp J, Urazaliev R, Donald PF, Holzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Cons 144:2607–2614

    Article  Google Scholar 

  • Kapos V, Rhind J, Edwards M, Price M, Ravilious C, Butt N (2000) Developing a map of the world’s mountain forests. In: Price MF, Butt N (eds) Forests in sustainable mountain development: a state of knowledge report for 2000. CAB International, Wallingford, UK, pp 4–19

    Chapter  Google Scholar 

  • Kashkarov RD, Turaev MM, Ten AG, Azimov NN (2012) New data on autumn migration of Sociable Lapwing (Chettusia gregaria) in Uzbekistan [in Russian]. Selevinia: Zoological Yearbook of Kazakhstan and Central Asia 2012:138-141

  • Kasparek M (1992) Status of sociable plover Chettusia gregaria and white-tailed plover C. leucura in Turkey and the Middle East. Sandgrouse 14:2–15

    Google Scholar 

  • Keijmel M, Babbington J, Roberts P, McGrady M, Meyburg B-U (2020) The world’s largest gathering of Steppe Eagles Aquila nipalensis discovered in central Saudi Arabia. Sandgrouse 42:60–69

    Google Scholar 

  • Klein Goldewijk K, Beusen A, Doelman J, Stehfest E (2017) Anthropogenic land use estimates for the Holocene-HYDE 3.2. Earth Syst Sci Data 9:927–953

    Article  Google Scholar 

  • Lowther AD, Lydersen C, Fedak MA, Lovell P, Kovacs KM (2015) The Argos-CLS Kalman Filter: error structures and state-space modelling relative to fastloc GPS data. PLoS ONE 10:e0124754

    Article  PubMed  PubMed Central  Google Scholar 

  • Méndez V, Alves JA, Þórisson B, Marca A, Gunnarsson TG, Gill JA (2020) Individual variation in migratory behavior in a subarctic partial migrant shorebird. Behav Ecol 31:672–679

    Article  Google Scholar 

  • Møller AP, Garamszegi LZ, Peralta-Sánchez JM, Soler JJ (2011) Migratory divides and their consequences for dispersal, population size and parasite–host interactions. J Evol Biol 24:1744–1755

    Article  PubMed  Google Scholar 

  • Murdoch DA, Serra G (2006) The status of Sociable Lapwing Vanellus gregarius in Syria. Sandgrouse 28:58–61

    Google Scholar 

  • Pollock KH, Winterstein SR, Bunck CM, Curtis PD (1989) Survival analysis in telemetry studies: the staggered entry design. J Wildl Manag 53:7–15

    Article  Google Scholar 

  • Rappole JH, Tipton AR (1991) New harness design for attachment of radio transmitters to small passerines. J Field Ornithol 62:335–337

    Google Scholar 

  • Sergio F, Tanferna A, Blas J, Blanco G, Hiraldo F (2019) Reliable methods for identifying animal deaths in GPS-and satellite-tracking data: review, testing, and calibration. J Appl Ecol 56:562–572

    Article  Google Scholar 

  • Sheldon RD, Koshkin MA, Kamp J, Dereliev S, Donald PF, Jbour S. 2012. International Single Species Action Plan for the Conservation of the Sociable Lapwing Vanellus gregarius. AEWA Technical Series No. 47, Bonn, Germany

  • Sheldon RD, Kamp J, Koshkin MA, Urazaliev RS, Iskakov TK et al (2013) Breeding ecology of the globally threatened Sociable Lapwing Vanellus gregarius and the demographic drivers of recent declines. J Ornithol 154:501–516

    Article  Google Scholar 

  • Siebert S, Kummu M, Porkka M, Döll P, Ramankutty N, Scanlon BR (2015) A global data set of the extent of irrigated land from 1900 to 2005. Hydrol Earth Syst Sci 19:1521–1545

    Article  Google Scholar 

  • Terraube J, Mougeot F, Cornulier T, Verma A, Gavrilov A, Arroyo B (2012) Broad wintering range and intercontinental migratory divide within a core population of the near-threatened pallid harrier. Divers Distrib 18:401–409

    Article  Google Scholar 

  • Urban EK, Fry CH, Keith S (1986) The Birds of Africa, Volume II: Game Birds to Pigeons. Princeton University Press, New Jersey

    Google Scholar 

  • van Bemmelen RSA, Kolbeinsson Y, Ramos R, Gilg O, Alves JA, et al. (2019) A migratory divide among Red-Necked Phalaropes in the Western Palearctic reveals contrasting migration and wintering movement strategies. Frontiers in Ecology and Evolution 7:86

  • Vidal PR, Sheldon R (2016) Observations of the critically endangered Sociable Lapwing Vanellus gregarius during autumn migration in Azerbaijan. Sandgrouse 38:36–37

    Google Scholar 

  • Wright HL, Lake IR, Dolman PM (2011) Agriculture—a key element for conservation in the developing world. Conserv Lett 5:11–19

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly funded by grants from the Darwin Initiative of the UK Government (grant references 15-032, 18-004 and EIDPO035). Additional funding was provided by Swarovski Optik (the BirdLife Species Champion for Sociable Lapwing) through the BirdLife Preventing Extinctions Programme, the African-Eurasian Waterbird Agreement (AEWA) and the German Ornithological Society (DO-G), the Mohammed bin Zayed Species Conservation Fund (MBZ) and the Ornithological Society of the Middle East, the Caucasus and Central Asia (OSME). We are hugely grateful to Jim Lawrence for supporting this work in many ways. We also thank the many people for sharing their unpublished Sociable Lapwing records, often accompanied by detailed notes and photographs, and the many surveyors who took part in field surveys: they are listed in Online Resource 8. Ralf Aumüller, Nigel Collar, Andrey Kovalenko, Anna Ten, Pavel Tomkovich and Christian Wegst visited various museums and copied information from the labels of Sociable Lapwing specimens. We also thank the many students from the Universities of Karaganda, Petropavlovsk, Kostanai, Nur-Sultan (Astana), Almaty and Tashkent who joined the field teams as part of a parallel programme of training. We thank Dan Ruthrauff, Nikita Chernetsov and two anonymous reviewers for helpful comments.

Funding

All funders are listed in the Acknowledgements section of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Donald.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. Chernetsov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1457 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donald, P.F., Kamp, J., Green, R.E. et al. Migration strategy, site fidelity and population size of the globally threatened Sociable Lapwing Vanellus gregarius. J Ornithol 162, 349–367 (2021). https://doi.org/10.1007/s10336-020-01844-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-020-01844-y

Keywords

Navigation