Skip to main content
Log in

Does foraging competition drive plumage convergence in three look-alike Atlantic Forest woodpecker species?

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Explaining the co-existence of sympatric and ecologically similar species is a central goal in ecology. In woodpeckers (Picidae), co-existence is frequently accompanied by plumage convergence. A particularly striking case concerns three woodpecker species in the Atlantic Forest of South America: Robust Woodpecker (Campephilus robustus), Lineated Woodpecker (Dryocopus lineatus) and Helmeted Woodpecker (Celeus galeatus), which show a remarkable degree of plumage similarity thought to result from convergence due to interspecific social dominance mimicry (ISDM). We studied the foraging ecology and interactions of these three species in old-growth forests and selectively logged forests to test the extent to which these species differ in various aspects of their foraging ecology, and we examined whether particular foraging requirements may help explain the association of the threatened Helmeted Woodpecker with mature forests. The species selected different tree species, tree diameters, foraging heights, decay states of trees and decay states of substrates, resulting in marked niche separation among the three species. Proportionally, the Robust Woodpecker chiselled more, Helmeted Woodpecker used more probing and Lineated Woodpecker used more hammering. Helmeted Woodpecker was the only species that included bamboos as foraging substrates, and it foraged more on dead wood than Lineated or Robust Woodpeckers, but mostly on small dead branches in live trees rather than standing dead trees. Foraging requirements are not the most likely factor explaining the association of Helmeted Woodpecker with mature forests. Limited resource and substrate overlap among the three woodpecker species, lack of interspecific interactions, and rarity of the Helmeted Woodpecker do not match predictions if these species were conforming to a mimicry complex under the hypothesis of ISDM. Instead, plumage convergence may aid in interactions with third species, or impart advantages in intraspecific competition.

Zusammenfassung

Fördert Konkurrenz bei der Nahrungssuche die Konvergenz der Gefiederfärbung dreier ähnlich aussehender Spechtarten im Atlantischen Regenwald?

Die Erklärung der Koexistenz bei sympatrischen und ökologisch ähnlichen Arten ist ein zentraler Gegenstand der Ökologie. Bei Spechten (Picidae) geht die Koexistenz häufig mit einer Konvergenz der Gefiederfärbung einher. Ein besonders auffälliger Fall betrifft drei Spechtarten im Atlantischen Regenwald Südamerikas: Scharlachkopfspecht (Campephilus robustus), Linienspecht (Dryocopus lineatus) und Wellenohrspecht (Celeus galeatus), die ein auffallend hohes Maß an Gefiederähnlichkeit aufweisen. Es wird davon ausgegangen, dass dies aus einer Konvergenz resultiert, die auf der interspezifischen Mimikry der sozialen Dominanz (engl. interspecific social dominance mimicry; ISDM) beruht. Wir untersuchten die Nahrungsökologie und Interaktionen dieser drei Arten in Altholzbeständen und selektiv bewirtschafteten Beständen, um zu testen, inwieweit sich diese Arten in verschiedenen Aspekten ihrer Nahrungsökologie unterscheiden. Weiterhin überprüften wir, ob bestimmte Anforderungen an die Nahrungssuche dazu beitragen können, die Assoziation des bedrohten Wellenohrspechts mit ausgewachsenen Waldbeständen zu erklären. Zwei oder jede der Arten wählten bzw. wählte unterschiedliche Baumarten, Baumdurchmesser, Baumhöhen bei der Nahrungssuche sowie Zersetzungszustände der Bäume und Substrate, was zu einer deutlichen Nischentrennung unter den drei Spechtarten führte. Proportional meißelte der Scharlachkopfspecht am meisten, während der Wellenohrspecht häufiger bohrte und der Linienspecht häufiger hämmerte. Der Wellenohrspecht war die einzige Art, die Bambus als Substrat für die Nahrungssuche einschloss. Außerdem nutzte diese Art mehr Totholz für die Nahrungssuche als der Linien- und Scharlachkopfspecht, jedoch handelte es sich hierbei hauptsächlich um kleine tote Äste lebender Bäume und nicht um stehendes Totholz. Die Anforderungen an die Nahrungssuche stellen nicht den wahrscheinlichsten Faktor dar, der die Assoziation des Wellenohrspechts mit ausgewachsenen Waldbeständen erklärt. Geringe Ressourcen- und Substratüberlappungen zwischen den drei Spechtarten, das Fehlen interspezifischer Interaktionen und die Seltenheit des Wellenohrspechtes stimmen nicht mit den Vorhersagen überein, wenn diese Arten gemäß der Hypothese der ISDM einem Mimikry-Komplex entsprechen würden. Stattdessen kann die Konvergenz der Gefiederfärbung bei Interaktionen mit anderen Arten vermitteln oder Vorteile bei intraspezifischer Konkurrenz bringen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photos by M. Lammertink

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Areta JI, Bodrati A, Cockle K (2009) Specialization on Guadua bamboo seeds by three bird species in the Atlantic Forest of Argentina. Biotropica 41:66–73

    Google Scholar 

  • Beauchamp G, Goodale E (2011) Plumage mimicry in avian mixed-species flocks: more or less than meets the eye? Auk 128:487–496

    Google Scholar 

  • Benz BW, Robbins MB, Zimmer KJ (2015) Phylogenetic relationships of the Helmeted Woodpecker (Dryocopus galeatus): a case of interspecific mimicry? Auk 132:938–950

    Google Scholar 

  • Brooks TM, Barnes R, Bartrina L, Butchart SHM, Clay RP, Esquivel EZ, Etcheverry NI, Lowen JC, Vincent J (1993) Bird surveys and conservation in the Paraguayan Atlantic Forest: Project CANOPY ‘92 final report. BirdLife Study Report 57. BirdLife International, Cambridge

  • Brower LP, Brower JVZ (1972) Parallelism, convergence, divergence, and the new concept of advergence in the evolution of mimicry. Conn Acad Arts Sci 4:57–67

    Google Scholar 

  • Cabrera AL (1976) Regiones fitogeográficas argentinas. In: Kugler WF (ed) Enciclopedia Argentina de Agricultura y Jardinería. Tomo 2, 2da edición. Acme, Buenos Aires, pp 1–85

  • Chazarreta L, Ojeda V, Lammertink M (2012) Morphological and foraging behavioral differences between sexes of the Magellanic Woodpecker (Campephilus magellanicus). Ornitol Neotrop 23:529–544

    Google Scholar 

  • Cockle KL, Areta JI (2013) Specialization on bamboo by Neotropical birds. Condor 115:217–220

    Google Scholar 

  • Czeszczewik D (2009) Foraging behaviour of White-backed Woodpeckers Dendrocopos leucotos in a primeval forest (Białowieża National Park, NE Poland): dependence on habitat resources and season. Acta Ornithol 44:109–118

    Google Scholar 

  • Dhondt AA (2012) Interspecific competition in birds. Oxford University Press, Oxford

    Google Scholar 

  • Diamond JM (1982) Mimicry of friarbirds by orioles. Auk 99:186–196

    Google Scholar 

  • Gauze GF (1934) The struggle for existence. The Williams & Wilkins Company, Baltimore

    Google Scholar 

  • Granada-Ríos HD, Mancera-Rodríguez NJ (2015) Aspectos ecológicos del carpintero Dryocopus lineatus (Linnaeus, 1766) en Santa Fe de Antioquia, Colombia. Ambiente y Desarrollo 19:33–48

    Google Scholar 

  • Gray GR (1845) The genera of birds: comprising their generic characters, a notice of the habits of each genus, and an extensive list of species referred to their several genera, vol 2. Longman, Brown, Green and Longmans, London, pp 1844–1849

    Google Scholar 

  • Imbeau L, Monkkonen M, Desrochers A (2001) Long-term effects of forestry on birds of the eastern Canadian boreal forest: a comparison with Fennoscandia. Conserv Biol 15:1151–1162

    Google Scholar 

  • Kisiel DS (1972) Foraging behaviour of Dendrocopus villosus and D. pubsecens in eastern New York state. Condor 72:393–398

    Google Scholar 

  • Kratter AW (1997) Bamboo specialization by Amazonian birds. Biotropica 29:100–110

    Google Scholar 

  • Krauczuk ER (2008) Riqueza específica, abundancia y ambientes de las aves de Corpus Christi, San Ignacio, Misiones, Argentina. Lundiana 9:29–39

    Google Scholar 

  • Krauczuk ER, Baldo JD (2004) Contribuição para o conhecimento da avifauna de um fragmento de floresta com araucária em Misiones, Argentina. Atualidades Ornitológicas 119:6

    Google Scholar 

  • Lammertink M (2007) Community ecology and logging responses of Southeast Asian woodpeckers (Picidae, Aves). PhD thesis, Universiteit van Amsterdam

  • Lammertink M, Cockle KL, Bodrati A, Santos REF (2012) Helmeted Woodpecker (Dryocopus galeatus). In: Schulenberg TS (ed) Neotropical Birds Online. Cornell Lab of Ornithology, Ithaca. https://neotropical.birds.cornell.edu

  • Lammertink M, Fernández JM, Cockle K (2019) Helmeted Woodpeckers roost in decay-formed cavities in large living trees: a clue to an old-growth forest association. Condor 121:1–10

    Google Scholar 

  • Lammertink M, Fernández JM, Cockle K (2020) Comparison of nesting ecology of three co-existing Atlantic Forest woodpeckers reveals narrow specialization in the Helmeted Woodpecker Celeus galeatus. Acta Ornithol (in press)

  • Lammertink M, Kopuchian C, Brandl HB, Tubaro PL, Winkler H (2016) A striking case of deceptive woodpecker colouration: the threatened Helmeted Woodpecker Dryocopus galeatus belongs in the genus Celeus. J Ornithol 157:109–116

    Google Scholar 

  • Lammertink M, Prawiradilaga DM, Setiorini U, Naing TZ, Duckworth JW, Menken SBJ (2009) Global population decline of the Great Slaty Woodpecker (Mulleripicus pulverulentus). Biol Conserv 142:166–179

    Google Scholar 

  • Leighton GM, Lees AC, Miller ET (2018) The Hairy-Downy game revisited: an empirical test of the interspecific social dominance mimicry hypothesis. Anim Behav 137:141–148

    Google Scholar 

  • Leite GA, Pinheiro RT, Marcelino JE, Figueira JEC, Delabie JHC (2013) Foraging behavior of Kaempfer’s Woodpecker (Celeus obrieni), a bamboo specialist. Condor 115:221–229

    Google Scholar 

  • Lima SL (1990) The influence of models on the interpretation of vigilance. In: Bekoff M, Jamieson D (eds) Interpretation and explanation in the study of animal behaviour: vol. 2. Explanation, evolution and adaptation. Westview Press, Boulder, pp 246267

  • MacArthur RH (1958) Population ecology of some warblers of Northeastern coniferous forests. Ecology 39:599–619

    Google Scholar 

  • Machado CG (1999) Composição e estrutura de bandos mistos de aves na Mata Atlântica do alto da Serra do Paranapiacaba, SP. Rev Bras Biol 59:75–85

    Google Scholar 

  • Martin PR, Martin TE (2001) Behavioral interactions between coexisting species: song playback experiments with wood warblers. Ecology 82:207–218

    Google Scholar 

  • Miller ET, Leighton GM, Freeman BG, Lees AC, Ligon RA (2019) Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat Commun 10:1602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Google Scholar 

  • Nappi A, Drapeau P, Leduc A (2015) How important is dead wood for woodpeckers foraging in eastern North American boreal forests? For Ecol Manag 346:10–21

    Google Scholar 

  • Newell P, King S, Kaller M (2009) Foraging behaviour of Pileated Woodpeckers in partial cut and uncut bottomland hardwood forest. For Ecol Manag 258:1456–1464

    Google Scholar 

  • Peters JL (1948) Check-list of birds of the world, vol 6. Museum of Comparative Zoology, Cambridge

    Google Scholar 

  • Power DM (1971) Warbler ecology: diversity, similarity, and seasonal differences in habitat segregation. Ecology 52:434–443

    Google Scholar 

  • Prum RO (2014) Interspecific social dominance mimicry in birds. Zool J Linn Soc 172:910–941

    Google Scholar 

  • Prum RO, Samuelson L (2012) Evolution of interspecific social dominance mimicry modeled by the “Hairy-Downy” game. J Theor Biol 313:42–60

    PubMed  Google Scholar 

  • Prum RO, Samuelson L (2016) Mimicry cycles, traps, and chains: the coevolution of toucan and kiskadee mimicry. Am Nat 187:753–764

    PubMed  Google Scholar 

  • R Core Team (2017). R: a language and environment for statistical computing. R

  • Remsen JV, Robinson SK (1990) A classification scheme for foraging behaviour of birds in terrestrial habitats. Stud Avian Biol 13:144–160

    Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Google Scholar 

  • Ríos RC (2006) Caracterização florística e fitosociológica da vegetação arbórea em três unidades pedológicas do Parque Provincial Cruce Caballero, Misiones, Argentina. Diss. Mestre em Ciências Florestais, Univ. Federal do Paraná, Curitiba

    Google Scholar 

  • Rolstad J, Majewski P, Rolstad E (1998) Black Woodpecker use of habitats and feeding substrates in a managed Scandinavian forest. J Wildl Manag 62:11–23

    Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2005) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, New York

    Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    CAS  PubMed  Google Scholar 

  • Schoener TW (1983) Field experiments on interspecific competition. Am Nat 122:240–2855

    Google Scholar 

  • Shakya SB, Fuchs J, Pons JM, Sheldon FH (2017) Tapping the woodpecker tree for evolutionary insight. Mol Phylogenet Evol 116:182–191

    PubMed  Google Scholar 

  • Short LL (1982) Woodpeckers of the world. Delaware Museum of Natural History, Greenville

    Google Scholar 

  • Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New Haven

    Google Scholar 

  • Socolar SJ, Robinson SK, Terborgh J (2013) Bird diversity and specialist bird occurrence in two bamboo die-offs in southeastern Peru. Condor 115:253–262

    Google Scholar 

  • Tanner JT (1942) The Ivory-billed Woodpecker. National Audubon Society Research Report No. 1. National Audubon Society, New York

  • Tavakilian G, Berkov A, Meurer-Grimes B, Mori S (1997) Neotropical tree species and their faunas of xylophagous longicorns (Coleoptera: Cerambycidae) in French Guiana. Bot Rev 63:303–355

    Google Scholar 

  • Tingley MW, Stillman AN, Wilkerson RL, Sawyer SC, Siegel RB (2020) Black-backed woodpecker occupancy in burned and beetle-killed forests: disturbance agent matters. For Ecol Manag 455:117964

    Google Scholar 

  • Tremblay JA, Ibarzabal J, Savard JPL (2010) Foraging ecology of Black-backed Woodpeckers (Picoides arcticus) in unburned eastern boreal forest stands. Can J For Res 40:991–999

    Google Scholar 

  • Vergara P, Schlatter RP (2004) Magellanic Woodpecker (Campephilus magellanicus) abundance and foraging in Tierra del Fuego, Chile. J Ornithol 145:343–351

    Google Scholar 

  • Villard P (1994) Foraging behavior of Black-backed and Three-toed woodpeckers during spring and summer in a Canadian boreal forest. Can J Zool 72:1957–1959

    Google Scholar 

  • Wiens JA (1989) Ecology of bird communities, vol I and II. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Williams JB (1975) Habitat utilization by four species of woodpeckers in a central Illinois woodland. Am Midl Nat 93:354–367

    Google Scholar 

  • Willis EO (1989) Mimicry in bird flocks of cloud forests in southeastern Brazil. Rev Bras Biol 49:615–619

    Google Scholar 

  • Winkler H, Christie DA (2002) Family Picidae (Woodpeckers). In: del Hoyo J, Elliot A, Sargatal J (eds) Handbook of the birds of the world, vol 7. Lynx Edicions, Barcelona, pp 296–555

  • Winkler H, Christie DA, Nurney D (1994) The colourful world of woodpeckers: an Oriental perspective. Oriental Bird Club Bull 19:30–33

    Google Scholar 

  • Winkler H, Christie DA, Nurney D (1995) Woodpeckers. A guide to the woodpeckers, piculets and wrynecks of the World. Pica Press, Sussex

    Google Scholar 

Download references

Acknowledgements

Comments and recommendations from two reviewers and the Subject Editor Jan Lifjeld much improved our manuscript. Paula Bertolini, Alejandro Bodrati, Federico Castía, Kristina Cockle, Hugo Janssen, John Fitzpatrick, José González, and Vanesa Maciel provided advice and logistical support. For assistance with capturing and radio-tracking woodpeckers we thank Marcelo Alves, Caterina Barisón, Flavia Barzan, Julián Cabruja, Brian Camacho, Patricia Casco, Matías Castellán, Matías Condori, Guy Cox, Iván Ebrecht, Ayelén Encinas, Anabella Fariña, Analia Fernández, Miguel Fernández, Carlos Ferreyra, Dorila Finken, Tomas Franzese, Julia Gastaudo, Carolina Gomez, Milka Gomez, Hugo González, Osvaldo Gularte, Valdomiro Gularte, Chuck Hunter, Emmanuel Lozana, Javier Luque, Sebastián Lyons, Giselle Mangini, Geoffrey McMullan, Catriel Oliva, Agustín Pereira, Sebastián Pereira, Fabricio Reales, Francisco Sanchez, Franco Sánchez, Sebastián Sandullo, Clifford Shackelford, Elias Sigura, Hugo de Siquiera Pereira, Luz Thomann, and Mariana Welter. Primary funding for fieldwork was provided by the Cornell Lab of Ornithology, including the Neotropical Birds program and the Forest Park Foundation Fund for Conservation Collaborations; additional funding was provided by National Geographic, Aves Argentinas and W. C. Hunter. Ministerio de Ecología de Misiones issued permits for capturing and radio-tagging woodpeckers and for access to protected areas. Arauco Argentina S.A. permitted access to Valle del Alegría, Laharrague S.A. permitted access to Lote 13, and Papel Misionero-Arcor permitted access to RNC Papel Misionero. None of our funders or permit providers had influence on the content of the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Fernández.

Additional information

Communicated by J. T. Lifjeld.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, J.M., Areta, J.I. & Lammertink, M. Does foraging competition drive plumage convergence in three look-alike Atlantic Forest woodpecker species?. J Ornithol 161, 1105–1116 (2020). https://doi.org/10.1007/s10336-020-01802-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-020-01802-8

Keywords

Navigation