Vanishing wildlife in populated areas: the demise of the Andalusian Buttonquail

Abstract

Extinction risk is often associated with intrinsic species traits such as larger size, higher trophic level, narrower habitat niche or smaller distribution area. Despite this, fast extinctions can also occur in species that apparently do not exhibit any of these traits. The Andalusian Buttonquail (Turnix sylvaticus sylvaticus) is a critically endangered taxon, which barely survives in a single population in western Morocco. Here, we describe how this taxon with a formerly wide distribution range, high reproductive rates, low trophic level in the food chain, small size and apparently coarse habitat requirements, is heading towards extinction. By means of environmental niche modelling, we outline its historical distribution and then at a regional scale (Andalucía) we explore the role of historical land use changes and human population trends in the rapid decline of the species. PCA of environmental variables showed that its distribution was mainly determined by low continentality and aridity. Since the nineteenth century, the decline in the extent of occurrence has been above 99.99%. PCA of land use changes showed that areas with a higher probability of historical presence have suffered more intense agricultural intensification and afforestation processes. These areas have also been those which have suffered higher human population pressure and development. Any conservation efforts should focus on maintaining coexistence of the species with humans.

Zusammenfassung

Das Verschwinden der Tierwelt in besiedelten Gebieten: Der Untergang des Laufhühnchens

Das Aussterberisiko hängt oft mit intrinsischen Artmerkmalen, wie beispielsweise einer größeren Körpergröße, einer höheren Trophieebene, einer engeren Habitatnische oder einem kleineren Verbreitungsgebiet, zusammen. Ungeachtet dessen können jedoch auch Arten, die augenscheinlich keines dieser Merkmale aufweisen, rasch aussterben. Das Laufhühnchen (Turnix sylvaticus sylvaticus) ist ein vom Aussterben bedrohtes Taxon, von dem es nur noch eine einzige Population im Westen Marokkos gibt. Hier beschreiben wir, wie dieses einst weit verbreitete Taxon, das hohe Fortpflanzungsraten, eine niedrige Trophieebene in der Nahrungskette, eine geringe Körpergröße und offenbar geringe Habitatansprüche aufweist, der Ausrottung entgegensteuert. Mittels Umweltnischenmodellierung umreißen wir die historische Verbreitung und untersuchen auf regionaler Ebene (in Andalusien) die Rolle, die historische Landnutzungsänderungen sowie die menschliche Bevölkerungsentwicklung beim rapiden Bestandsrückgang dieser Art gespielt haben. Eine Hauptkomponentenanalyse der Umweltvariablen zeigte, dass die Verbreitung der Art hauptsächlich durch ein gering ausgeprägtes kontinentales Klima und Trockenheit bestimmt wurde. Seit dem 19. Jahrhundert ist die Art um mehr als 99.99% zurückgegangen. Eine Hauptkomponentenanalyse der Landnutzungsänderungen zeigte, dass Gebiete, in denen das Laufhühnchen-sylvatica einst mit höherer Wahrscheinlichkeit vorkam, eine stärkere Intensivierung der Landwirtschaft und stärkeren Schutzwaldanbau erfahren haben. In diesen Gebieten ist die menschliche Bevölkerung zudem besonders stark gewachsen. Jegliche Schutzmaßnahmen sollten sich darauf konzentrieren, die Koexistenz der Art mit Menschen zu erhalten.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amatulli G, Domisch S, Tuanmu M-N, Parmentier B, Ranipeta A, Malczyk J, Jetz W (2018) A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci Data. https://doi.org/10.1038/sdata.2018.40(Article No. 180040)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arévalo Baca J (1887) Aves de España. Imprenta de la Viuda e Hijos de Aguado, Madrid

    Google Scholar 

  3. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x

    Article  Google Scholar 

  4. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23(8):453–460

    Article  Google Scholar 

  5. Brook BW, Sleightholme SR, Campbell CR, Buettel JC (2018) Deficiencies in estimating the extinction date of the thylacine with mixed certainty data. Conserv Biol 32:1195–1197. https://doi.org/10.1111/cobi.13186

    Article  PubMed  Google Scholar 

  6. Bucher EH (1992) The Causes of extinction of the passenger pigeon. In: Power DM (ed) Current ornithology, vol 9. Springer, Boston

    Google Scholar 

  7. Carlson CJ, Bond AL, Burgio KR (2018) Estimating the extinction date of the thylacine with mixed certainty data. Conserv Biol 32:477–483. https://doi.org/10.1111/cobi.13037

    Article  PubMed  Google Scholar 

  8. Catry P (1999) Aves nidificantes possivelmente extintas em Portugal Continental. Revisao e síntese da informaçao disponível. Airo 10:1–13

    Google Scholar 

  9. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253

    Article  Google Scholar 

  10. Chapman A, Buck WJ (1893) Wild Spain. London, London

    Google Scholar 

  11. Clavero M, Hermoso V (2015) Historical data to plan the recovery of the European eel. J Appl Ecol 52(4):960–968

    Article  Google Scholar 

  12. Collins MD (2018) Using a drone to search for the ivory-billed woodpecker (Campephilus principalis). Drones 2(1):11. https://doi.org/10.3390/drones2010011

    Article  Google Scholar 

  13. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  14. Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G (2009) Multiple ecological pathways to extinction in mammals. Proc Natl Acad Sci USA 106:10702. https://doi.org/10.1073/pnas.0901956106

    Article  PubMed  Google Scholar 

  15. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the anthropocene. Science 345:401–406

    CAS  Article  Google Scholar 

  16. Étchécopar RD, Hüe F (1964) Les Oiseaux du Nord de l'Afrique de la Mer Rouge aux Canaries. Éditions N Boubeé, Paris

    Google Scholar 

  17. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  18. Fischer G, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D (2008) Global agro-ecological zones assessment for agriculture (GAEZ 2008). In: IIASA, Laxenburg, Austria and FAO, Rome, Italy

  19. Fisher DO, Blomberg SP, Owens PF (2003) Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc R Soc B 270:1801–1808. https://doi.org/10.1098/rspb.2003.2447

    Article  PubMed  Google Scholar 

  20. Flieg GM (1973) Breeding biology and behaviour of the South African Hemipode in captivity. Avic Mag 79:55–59

    Google Scholar 

  21. Foden WB, Young BE, Akçakaya HR et al (2019) Climate change vulnerability assessment of species. WIREs Clim Change 10:e551. https://doi.org/10.1002/wcc.551

    Article  Google Scholar 

  22. Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC (2007) LoCoH: nonparametric kernel methods for constructing home ranges and utilization distributions. PLoS ONE 2:e207. https://doi.org/10.1371/journal.pone.0000207

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giraldes A (1879) Catálogo das aves de Portugal existentes actualmente no Museu de Coimbra. Imprensa da Universidade, Coimbra, p 166

    Google Scholar 

  24. González-Suárez M, Gómez A, Revilla E (2013) Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4(6):1–16

    Article  Google Scholar 

  25. Gordo O, Ferrer X, Reig-Ferrer A (2006) Unlikely occurrence of the Andalusian Hemipode Turnix sylvatica in Catalonia (NE Spain) one century ago. Rev Catalana Ornitol 22:30–34

    Google Scholar 

  26. Gregory RD, Skorpilova J, Vorisek P, Butler S (2019) An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol Ind 103:676–687. https://doi.org/10.1016/j.ecolind.2019.04.064

    Article  Google Scholar 

  27. Gutiérrez-Expósito C, Copete JL, Crochet PA, Qninba A, Garrido H (2011) History, status and distribution of the Andalusian Buttonquail in the WP. Dutch Bird 33:75–93

    Google Scholar 

  28. Gutiérrez-Expósito C, García-Gorría R, Qninba A, Clavero M, Revilla E (2019) The farmland refuge of the last Andalusian Buttonquail population. Global Ecol Conserv 17:e00590. https://doi.org/10.1016/j.gecco.2019.e00590

    Article  Google Scholar 

  29. Gutiérrez-Expósito C, García Gorría R, Qninba A, Claver M, Revilla E (2020) Breeding ecology of the Andalusian Buttonquail (Turnix sylvaticus sylvaticus). Ostrich 91(1):75–82. https://doi.org/10.2989/00306525.2020.1712665

    Article  Google Scholar 

  30. Heim de Balsac H, Mayaud N (1962) Les Oiseaux du Nord-est de l'Afrique. Editions Paul Chevalier, Paris

    Google Scholar 

  31. Hoesch W (1960) Zum brutverhalten des laufhühnchens Turnix sylvatica lepurana. J Ornithol 101:265–275. https://doi.org/10.1007/BF01671039

    Article  Google Scholar 

  32. Hoffman M, Hilton-Taylor C, Angulo A et al (2010) The impact of conservation on the status of the World’s vertebrates. Science 330(6010):1503–1509. https://doi.org/10.1126/science.1194442

    CAS  Article  Google Scholar 

  33. Irby L (1875) The ornithology of the straits of gibraltar. K.A. Porter, London

    Google Scholar 

  34. Isenmann P, Gaultier T, El-Hili A, Azafzat H, Dlensi H, Smart M (2005) Oiseaux de Tunisie. Société d’Études Ornithologiques de France. Muséum Nationale d’Histoire Naturelle, France

    Google Scholar 

  35. Kehoe L, Romero-Muñoz A, Polaina E, Estes L, Kreft H, Kuemmerle T (2017) Biodiversity at risk under future cropland expansion and intensification. Nat Ecol Evol 1:1129–1135. https://doi.org/10.1038/s41559-017-0234-3

    Article  PubMed  Google Scholar 

  36. Lee TM, Jetz W (2020) Unravelling the structure of species extinction risk for predictive conservation science. Proc R Soc B 278:1329–1338. https://doi.org/10.1098/rspb.2010.1877

    Article  Google Scholar 

  37. Llamas RM (1988) Conflicts between wetland conservation and groundwater exploitation: two cases histories in Spain. Environ Geol Water Sci 11(3):241–251. https://doi.org/10.1007/BF02574814

    Article  Google Scholar 

  38. López Seoane V, Montenegro P (1861) Catálogo de las aves observadas en Andalucía. Revista de los progresos de las Ciencias Exactas, Físicas y Naturales X I 1861:326–384

    Google Scholar 

  39. Lovejoy TE, Hannah L (eds) (2019) Biodiversity and climate change. Transforming the biosphere. Yale University Press, New Haven & London

    Google Scholar 

  40. Madge S, McGowan P (2002) Pheasant, Partridge and Grouse. Princeton University Press, Princeton

    Google Scholar 

  41. Malvárez G, Pollard J, Domínguez R (2000) Origins, managements, and measurement of stress on the coast of Southern Spain. Coast Manag 28:2015–2234

    Google Scholar 

  42. Matthews A, Matthews H (1849) The birds of Oxfordshire and its neighbourhood. Zoologist 7:2592–2603

    Google Scholar 

  43. Moreira JM, Quijada J, Ortega E, Romero D, Gil Y (2007) Mapas de usos y coberturas vegetales del suelo de Andalucía. Escala 1/25,000. Guía Técnica. Consejería de Medio Ambiente (Junta de Andalucía): Sevilla

  44. Mose I (2016) Protected áreas and regional development in Europe. Towards a new model for the 21st century. London. 10.4324/9781315602639

  45. Murray N (2017) Global 10 × 10-km grids suitable for use in IUCN Red List of Ecosystems assessments (vector and raster format). Figshare. https://doi.org/10.6084/m9.figshare.4653439

    Article  Google Scholar 

  46. Pérez-Díaz JM (2014) Caracterización agrarian del territorio de la Oficina Comarcal Agraria “Entorno de Doñana”, provincia de Huelva. Consejería de Agricultura, pesca y Desarrollo Rural. Junta de Andalucía. Unpublished report.

  47. Pineau J, Giraud-Audine M (1979) Les oiseaux de la Péninsule Tingitane. Bilan des conneisances actuelles. Trav Inst Sci Rabat sér Zool 38:1–147

    Google Scholar 

  48. Pratesi F (1974) Tre storie du ucelli: il francolino, la quaglia tridattila e la gallina prataiola, en Pedrotti, F. (ed.) S.O.S. Fauna. Animali in pericolo in Italia. WWF

  49. Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69(1):789–815

    CAS  Article  Google Scholar 

  50. Reyes Prósper V (1998) (1885) Catálogo de las aves de España Portugal e islas Baleares. Memorias de Historia Natural. Edición facsímil, Valencia

    Google Scholar 

  51. Rivas-Martínez S, Rivas-Saénz S, Penas A (2011) Worldwide bioclimatic classification system. Glob Geoboty 1:1–634

    Google Scholar 

  52. Saunders H (1871) A list of the birds of Southern Spain. Ibis 1871:204–225

    Google Scholar 

  53. Solís F (1995) Seguimiento de la Población de Torillos en la Provincia de Cádiz (Memoria final). Informe inédito. Consejería de Medio Ambiente, Junta de Andalucía

  54. Solow AR, Beet AR (2014) On uncertain sightings and inference about extinction. Conserv Biol 28:1119–1123. https://doi.org/10.1111/cobi.12309

    Article  PubMed  Google Scholar 

  55. Sousa A, García-Murillo P (1998) Cambios históricos en el avenamiento superficial y la vegetación del Parque Natural de Doñana (Sector Abalario), Huelva. Ería 46:165–182

    Google Scholar 

  56. Thévenot M, Vernon R, Bergier P (2003) The Birds of Morocco. BOU Checklist Series No. 20. British Ornithologist’s Union and British Ornitologist’s Club

  57. Title PO, Bemmels JB (2018) ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modelling. Ecography 41:291–307. https://doi.org/10.1111/ecog.02880

    Article  Google Scholar 

  58. Traba J, Morales MB (2019) The decline of farmland birds in Spain is strongly associated to the loss of fallow land. Sci Rep 9:9473. https://doi.org/10.1038/s41598-019-45854-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Urdiales C (1993) Estudio de prospección en relación con la puesta en marcha de un plan de manejo del Torillo en el Parque Nacional de Doñana: informe final. Informe inédito, Parque Nacional de Doñana

    Google Scholar 

  60. Violani CG, Massa B (1993) Extinction of the Andalusian Hemipode Turnix s. sylvatica (Desf.) in the Mediterranean region. Bull Brit Orn Club 113(4):225–229

    Google Scholar 

  61. World Bank Group (2016) Global Solar Atlas. Available: https://globalsolaratlas.info/. Accessed 12 Mar 2019

Download references

Acknowledgements

We wish to thank to all consulted museum and collections staff at Haus der Natur, Museum für Natur und Technik (Salzburg), Naturhistorisches Museum Wien (Vienna), Royal Belgian Institute of Natural Sciences (Brussels), Luomus Luonnontieteellinen Keskusmuseo (Helsinki), Museé Zoologique de Strasbourg (Strasbourg), Museum National d'Histoire Naturelle (Paris), Forschunginstitut und Naturmuseum Senckenberg (Frankfurt), Museum für Naturkunde (Berlin), Forschungs Museum Koenig (Bonn), Museum Heineanum Halberstadt (Halberstadt), Staatliches Museum für Tierkunde (Dresden), National Museum of Ireland (Dublin), Museo Civico Craveri (Bra), Museo Civico de Storia Naturale di Verona (Verona), Museo Civico de Zoologia di Roma (Rome), Museo Civico di Storia Naturale di Milano (Milan), Museo Civico di Storia Naturale Giacomo Doria (Genoa), Museo di Storia Naturale dell'Università di Firenze (Florence), Museo ed Instituto di Zoologia Sistematica dell'Universitá di Torino (Turin), Museo Regionale di Storia Naturale e Mostra Permanente del Carretto (Terrassini), Université Mohammed V—Institut Scientifique (Rabat), Naturhistorik Museum (Oslo), Museu da Ciência, Universidade de Coimbra (Coimbra), Зooлoгичecкий мyзeй Mocкoвcкoгo yнивepcитeтa (Moskow), Colegio San Juan Bosco Campano (Chiclana de la Frontera), Estación Biológica de Doñana (Seville), Museo Instituto Padre Suárez (Granada), Museo de Ciencias Naturales IES Nuestra Señora de la Victoria (Malaga), Museo Mariano de la Paz (Linares), Museo Nacional de Ciencias Naturales (Madrid), Museu de Ciènces Naturals (Barcelona), Museum d’Hisotire Naturelle de Genève (Geneva), Naturalis Biodiversity Center (Leiden), National Museums North Ireland (Belfast), Museum of Zoology of the University of Cambridge (Cambridge), National Museum Liverpool (Liverpool), The Manchester Museum (Manchester), Great North Museum Hancock (New Castle upon Tyne), British Museum of Natural History (Tring), Leeds Museum Discovery Centre (Leeds), Norfolk Museums (Norwich), National Museums of Scotland (Edinburgh), American Museum of Natural History (New York, NY), Smithsonian National Museum of Natural History (Washington D.C.), Field Museum of Natural History (Chicago, IL), Museum of Comparative Zoology, University of Harvard (Cambridge, MA), Cornell University Museum of Vertebrates (Ithaca, NY), The Academy of Natural Sciences, Drexel University (Philadelphia, PA) and the Western Foundation of Vertebrate Zoology (Camarillo, CA). CGE was funded by a grant (BES-2015-074938) of the Severo Ochoa program to Centres of Excellence in R + D + I (SEV-2012-0262-01) of the Spanish Ministry of Science, Innovation and Universities. James Macaluso and one anonymous reviewer revised and edited the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos Gutiérrez-Expósito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by T. Gottschalk.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Expósito, C., Revilla, E. & Clavero, M. Vanishing wildlife in populated areas: the demise of the Andalusian Buttonquail. J Ornithol 161, 759–768 (2020). https://doi.org/10.1007/s10336-020-01771-y

Download citation

Keywords

  • Distribution
  • Land use change
  • Andalusian buttonquail
  • Turnix sylvaticus sylvaticus