Abstract
Several studies on wind turbine collision mortality in raptors suggest a bias towards adult birds, while sex-biased mortality has not yet been documented. We compared collision mortality in relation to all known causes of mortality and in relation to demographic data for the German population of the White-tailed Eagle and found collision mortality to be sex biased but not age biased. We suggest that these contrasting results may in part be explained by the lack of baseline data about the demographic structure of surveyed populations in previous studies. Our results stress the importance of baseline data for inferring demographic consequences of wind turbine collision mortality.
Zusammenfassung
Die Schlagopfergefährdung von Seeadlern Haliaeetus albicilla ist geschlechts-, jedoch nicht altersabhängig
Verschiedene Studien zur Schlagopfergefährdung von Greifvögeln an Windenergieanlagen deuten darauf hin, dass ältere Vögel stärker gefährdet sind als Jungvögel. Ein Einfluss des Geschlechts auf die Schlagopfergefährdung von Greifvögeln wurde bisher nicht sicher nachgewiesen. Wir verglichen die Altersstruktur und das Geschlechterverhältnis aller bekannten Seeadler-Schlagopfer an Windenergieanlagen in Deutschland mit den Verhältnissen aller anderen Totfunde sowie mit demographischen Daten aus einem Populationsmodell. Hierbei zeigte sich, dass im Gegensatz zu früheren Studien das Geschlecht einen Einfluss auf die Schlagopfergefährdung hat (männliche Seeadler waren stärker betroffen), jedoch keine Altersabhängigkeit besteht. Eine mögliche Erklärung für die gegensätzlichen Ergebnisse könnte sein, dass frühere Studien die Schlagopferzahlen nicht mit Referenzdaten zur Demographie der untersuchten Vogelpopulationen abgeglichen haben. Unsere Ergebnisse zeigen die Bedeutung solcher Referenzdaten für Rückschlusse auf die demografischen Folgen von Mortalität durch Kollisionen mit Windenergieanlagen.
This is a preview of subscription content, access via your institution.

References
Band W, Madders M, Whitfield DP (2005) Developing field and analytical methods to assess avian collision risk at windfarms. In: de Lucas M, Janss G, Ferrer M (eds) Birds and wind power. Lynx Edicions, Barcelona
Bauer HG, Bezzel E, Fiedler W (2005) Das Kompendium der Vögel Mitteleuropas. Alles über Biologie, Gefährdung und Schutz. AULA-Verlag, Wiebelsheim
Bellebaum J, Korner-Nievergelt F, Duerr T, Mammen U (2013) Wind turbine fatalities approach a level of concern in a raptor population. J Nat Conserv 21:394–400. https://doi.org/10.1016/j.jnc.2013.06.001
Beston JA, Diffendorfer JE, Loss SR, Johnson DH (2016) Prioritizing avian species for their risk of population-level consequences from wind energy development. PLoS ONE 11:e0150813. https://doi.org/10.1371/journal.pone.0150813
Bevanger KM, Berntsen FEH, Clausen SM, et al (2011) Pre-and post-construction studies of conflicts between birds and wind turbines in coastal Norway (BirdWind). Report on findings 2007–2010. NINA report 620
Chamberlain D, Freeman S, Rehfisch M, Fox T, Desholm M (2005) Appraisal of Scottish Natural Heritage’s wind farm collision risk model and its application. In: BTO Research Report 401
Chamberlain DE, Rehfisch MR, Fox AD et al (2006) The effect of avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis 148:198–202. https://doi.org/10.1111/j.1474-919X.2006.00507.x
Dahl EL, May R, Hoel PL et al (2013) White-tailed eagles (Haliaeetus albicilla) at the Smøla wind-power plant, Central Norway, lack behavioral flight responses to wind turbines. Wildl Soc Bull 37:66–74. https://doi.org/10.1002/wsb.258
Drewitt AL, Langston RH (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42
Grande C (2018) Unterscheidet sich das Kollisionsrisiko von Rohrweihen an Windenergieanlangen zwischen Männchen und Weibchen? Vogelwarte 56:398–399
Grünkorn T, Blew J, Coppack T, et al (2016) Ermittlung der Kollisionsraten von (Greif)Vögeln und Schaffung planungsbezogener Grundlagen für die Prognose und Bewertung des Kollisionsrisikos durch Windenergieanlagen (PROGRESS). Schlussbericht zum durch das Bundesministerium für Wirtschaft und Energie (BMWi) im Rahmen des 6. Energieforschungsprogrammes der Bundesregierung geförderten Verbundvorhaben PROGRESS, FKZ 325300A-D.
Hunt G (2002) Golden Eagles In A Perilous Landscape: Predicting The Effects Of Mitigation For Wind Turbine Blade-Strike Mortality. Consultant Report for the California Energy Commission,
Ito H, Sudo-Yamaji A, Abe M et al (2003) Sex identification by alternative polymerase chain reaction methods in falconiformes. Zoolog Sci 20:339–344. https://doi.org/10.2108/zsj.20.339
Krone O, Treu G (2018) Movement patterns of white-tailed sea eagles near wind turbines. J Wildl Manag. https://doi.org/10.1002/jwmg.21488
Krüger O, Grünkorn T, Struwe-Juhl B (2010) The return of the white-tailed eagle (Haliaeetus albicilla) to northern Germany: Modelling the past to predict the future. Biol Conserv 143:710–721. https://doi.org/10.1016/j.biocon.2009.12.010
Marques AT, Batalha H, Rodrigues S et al (2014) Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol Conserv 179:40–52. https://doi.org/10.1016/j.biocon.2014.08.017
May R, Nygård T, Dahl EL, Reitan O, Bevanger K (2011) Collision risk in white-tailed eagles. In: Modelling kernel-based collision risk using satellite telemetry data in Smøla wind-power plant. Norwegian Institute for Nature Research. NINA Report 692
Morinha F, Travassos P, Seixas F et al (2014) Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study 61:255–259. https://doi.org/10.1080/00063657.2014.883357
Nadjafzadeh M, Voigt CC, Krone O (2016) Spatial, seasonal and individual variation in the diet of White-tailed Eagles Haliaeetus albicilla assessed using stable isotope ratios. Ibis 158:1–15
Probst R, Struwe-Juhl B (2009) Die Kleider des Seeadlers (Haliaeetus albicilla) unter dem Einfluss individueller und geografischer Variation. Denisia 29:159–172
R Development Core Team (2018) R: a language and environment for statistical computing Version 3.5.2. R Foundation for Statistical Computing, Wien
Stienen EWM, Courtens W, Everaert J, Van De Walle M (2008) Sex-biased mortality of common terns in wind farm collisions. The Condor 110:154–157. https://doi.org/10.1525/cond.2008.110.1.154
Struwe-Juhl B, Schmidt R (2003) Flight feather moult of White-tailed Eagle (Haliaeetus albicilla) in Schleswig-Holstein, Germany. J Ornithol 144:418–437. https://doi.org/10.1007/BF02465505
Stubben C, Milligan B (2007) Estimating and analyzing demographic models using the popbio Package in R. J Stat Softw 22:1–23. https://doi.org/10.18637/jaa.v022.i11
Sulawa J, Robert A, Köppen U et al (2010) Recovery dynamics and viability of the white-tailed eagle (Haliaeetus albicilla) in Germany. Biodivers Conserv 19:97–112. https://doi.org/10.1007/s10531-009-9705-4
Watson RT, Kolar PS, Ferrer M et al (2018) Raptor interactions with wind energy: case studies from around the world. J Raptor Res 52:1–18. https://doi.org/10.3356/JRR-16-100.1
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by O. Krüger.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Heuck, C., Herrmann, C., Wendt, J. et al. Sex- but not age-biased wind turbine collision mortality in the White-tailed Eagle Haliaeetus albicilla. J Ornithol 161, 753–757 (2020). https://doi.org/10.1007/s10336-020-01757-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10336-020-01757-w
Keywords
- Birds of prey
- Wind energy
- Collision risk
- Sex differences