Skip to main content

Traffic noise as a potential stressor to offspring of an urban bird, the European Starling

Abstract

Anthropogenic disturbances induce stress in a variety of urban species. We examined the effects of traffic noise on the physiological stress response of nestling European Starlings (Sturnus vulgaris). Nest boxes were randomly assigned to either an experimental (increased urban noise played in nest box) or a control (typical urban/ambient noise) group. Heterophil/lymphocyte (H/L) ratios were determined to estimate physiological stress of nestlings at 11 and 15 days of age. Higher H/L ratios are associated with increased stress responses in birds. We predicted that nestlings in the experimental treatment would have higher H/L ratios and lower condition and fledging success than those in the control group on both days 11 and 15, but we detected no such differences on either day. Day 15 experimental nestlings, however, showed a non-significant trend toward lower H/L ratios than did day 15 control nestlings. We also examined whether nestlings became habituated (lower H/L ratios on day 15 than day 11) or sensitized (higher H/L ratios on day 15) to urban noise over time. There was a non-significant trend for experimental nestlings to have lower H/L ratios on day 15 than day 11, but no such pattern was detected in control nestlings. Our findings suggest that constant traffic noise is not stressful to nestlings in this urban-thriving species.

Zusammenfassung

Verkehrslärm als möglicher Stress für Nestlinge eines Stadtvogels, dem Europäischen Star.

Anthropogene Störungen verursachen Stress bei einer Vielzahl von städtischen Arten. Wir untersuchten die Auswirkungen von Verkehrslärm auf die physiologische Stressreaktion von Nestlingen des Europäischen Stars (Sturnus vulgaris). Nistkästen wurden nach dem Zufallsprinzip entweder einer experimentellen Gruppe zugeordnet (erhöhter urbaner Lärm, der im Nistkasten vorgespielt wurde) oder einer Kontrollgruppe mit typischem Stadt-/Umgebungslärm. Heterophile/Lymphozyten (H/L)-Verhältnisse wurden bestimmt, um physiologischen Stress der Nestlinge im Alter von 11 und 15 Tagen zu messen. Höhere H/L-Verhältnisse sind mit erhöhten Stressreaktionen bei Vögeln verbunden. Wir erwarteten, dass Nestlinge in den experimentellen Kästen höhere H/L-Verhältnisse, geringere Körperkondition und geringeren Ausfliegeerfolg sowohl am 11. wie am 15. Tag aufweisen als in der Kontrollgruppe. Allerdings konnten diese Unterschiede nicht gefunden werden. Die Nestlinge in den experimentellen Kästen zeigten aber am 15. Tag einen, wenn auch nicht signifikanten, Trend zu geringeren H/L-Werten als die Kontrolle. Wir untersuchten ferner, ob Nestlinge Gewöhnungseffekte an Stadtlärm zeigen, mit geringere H/L-Werten am 15. Tag, oder umgekehrt, sensibler werden, mit höheren H/L-Werten am 15. Tag. Es zeigt sich ein nicht-signifikanter Trend bei den experimentellen Vögeln mit etwas geringeren H/L-Werten am Tag 15, nicht aber in der Kontrollgruppe. Unsere Ergebnisse lassen schließen, dass ständiger Verkehrslärm die Nestlinge dieser urban lebenden Art nicht belastet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anderson PA, Berzins IK, Fogarty F, Hamlin HJ, Guillette LJ Jr (2011) Sound, stress, and seahorses: the consequences of a noisy environment to animal health. Aquaculture 311:129–138

    Google Scholar 

  2. Angelier F, Meillère A, Grace JK, Trouvé C, Brischoux F (2016) No evidence for an effect of traffic noise on the development of the corticosterone stress response in an urban exploiter. Gen Comp Endocr 232:43–50

    PubMed  CAS  Google Scholar 

  3. Babisch W (2003) Stress hormones in the research on cardiovascular effects of noise. Noise Health 5:1–11

    PubMed  CAS  Google Scholar 

  4. Banbura J, Skwarska J, Banbura M, Gladalski M, Holysz M, Kalinski A, Markowski M, Wawrzyniak J, Zielinski P (2013) Spatial and temporal variation in heterophil-to-lymphocyte ratios of nestling passerine birds: comparison of Blue Tits and Great Tits. PLoS One 8:e74226. https://doi.org/10.1371/journal.pone.0074226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25:180–189

    PubMed  Google Scholar 

  6. Bayne EM, Habib L, Boutin S (2008) Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest. Cons Biol 22:1186–1193

    Google Scholar 

  7. Bennett GF (1970) Simple techniques for making avian blood smears. Can J Zool 48:585–586

    Google Scholar 

  8. BirdLife International (2018) State of the world’s birds: taking the pulse of the planet. BirdLife International, Cambridge

    Google Scholar 

  9. Blickley JL, Blackwood D, Patricelli GL (2012a) Experimental evidence for the effects of chronic anthropogenic noise on abundance of Greater Sage-Grouse at leks. Conserv Biol 26:461–471

    PubMed  Google Scholar 

  10. Blickley JL, Word KR, Krakauer AH, Phillips JL, Sells SN, Taff CC, Wingfield JC, Patricelli GL (2012b) Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater sage-grouse (Centrocercus urophasianus). PLoS One 7:e50462

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Breeding Bird Survey (2015): https://www.mbr-pwrc.usgs.gov/bbs/BBS_Trend_Estimates_2015_7-29-2016.csv

  12. Brumm H (2006) City birds have changed their tune. Curr Biol 16:R1003–R1004

    PubMed  CAS  Google Scholar 

  13. Bruun M, Smith HG (2003) Landscape composition affects habitat use and foraging flight distances in breeding European starlings. Biol Conserv 114:179–187

    Google Scholar 

  14. Cabe PR (1993) European Starling (Sturnus vulgaris), version 2.0. In: Poole AF, Gill FB (eds) The birds of North America. Cornell Lab of Ornithology, Ithaca. https://doi.org/10.2173/bna.48

    Chapter  Google Scholar 

  15. Caetano JVO, Maia MR, Manica LT, Macedo RH (2014) Immune-related effects from predation risk in neotropical blue-black grassquits (Volatinia jacarina). Behav Proc 109:58–63

    Google Scholar 

  16. Campo JL, Gil MG, Davila SG (2005) Effects of specific noise and music stimuli on stress and fear levels of laying hens of several breeds. Appl Anim Behav Sci 91:75–84

    Google Scholar 

  17. Carlo MA (2013) Evaluating the effects of capture and handling time on plasma corticosterone and heterophil/lymphocyte ratios in the Tufted Titmouse (Baeolophus bicolor). University of Mary Washington, http://archive.umw.edu:8080/vital/access/manager/Repository/umw:1897

  18. Casasole G, Raap T, Costantini D, AbdElgawad H, Asard H, Pinxten R, Eens M (2017) Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds. Compar Biochem Physiol Part A Mol and Integr Physiol 210:14–21

    CAS  Google Scholar 

  19. Chan AAY-H, Blumstein DT (2011) Attention, noise, and implications for wildlife conservation and management. Appl Anim Behav Sci 131:1–7

    Google Scholar 

  20. Cirule D, Krama T, Vrublevska J, Rantala MJ, Krams I (2012) A rapid effect of handling on counts of white blood cells in a wintering passerine bird: a more practical measure of stress? J Ornithol 153:161–166

    Google Scholar 

  21. Clergeau P, Savard JPL, Mennechez G, Falardeau G (1998) Bird abundance and diversity along an urban-rural gradient: a comparative study between two cities on different continents. Condor 100:413–425

    Google Scholar 

  22. Copan A (2013) White blood cells as indicators of adult condition and parental effort in European starlings, Sturnus vulgaris. Honours thesis Saint Mary’s University, Halifax

  23. Crino OL, Klaassen Van Oorschot B, Johnson EE, Malisch JL, Breuner CW (2011) Proximity to a high traffic road: glucocorticoid and life history consequences for nestling white-crowned sparrows. Gen Comp Endocrinol 173:323–332

    PubMed  CAS  Google Scholar 

  24. Crino OL, Johnson EE, Blickley JL, Patricelli GL, Breuner CW (2013) Effects of experimentally elevated traffic noise on nestling white-crowned sparrow stress physiology, immune function and life history. J Exp Biol 216:2055–2062

    PubMed  Google Scholar 

  25. Croll DA, Clark CW, Calambokidis J, Ellison WT, Tershy BR (2001) Effect of anthropogenic low-frequency noise on the foraging ecology of Balaenoptera whales. Anim Conserv 4:13–27

    Google Scholar 

  26. Cyr NE, Romero LM (2007) Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen Comp Endocrinol 151:82–89

    PubMed  CAS  Google Scholar 

  27. Cyr NE, Romero LM (2009) Identifying hormonal habituation in field studies of stress. Gen Compar Endocrinol 161:295–303

    CAS  Google Scholar 

  28. Davies S, Haddad N, Ouyang JQ (2017) Stressful city sounds: glucocorticoid responses to experimental traffic are environmentally dependent. Biol Lett 13:20170276

    PubMed  PubMed Central  Google Scholar 

  29. Davis AK (2005) Effect of handling time and repeated sampling on avian white blood cell counts. J Field Ornithol 76:334–338

    Google Scholar 

  30. Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Google Scholar 

  31. de Boer SF, van der Gugten J, Slangen JL (1989) Corticosterone responses to predictable and unpredictable noise stress in rats. Physiol Behav 45:789–795

    PubMed  Google Scholar 

  32. de Bruijn R, Reed JM, Romero LM (2018) Chronic repeated exposure to weather-related stimuli elicits few symptoms of chronic stress in captive molting and non-molting European starlings (Sturnus vulgaris). J Exp Zool 327:493–503

    Google Scholar 

  33. Dickens MJ, Romero LM (2013) A consensus endocrine profile for chronically stressed wild animals does not exist. Gen Comp Endocrinol 191:177–189

    PubMed  CAS  Google Scholar 

  34. Ditchkoff S, Saalfeld T, Gibson J (2006) Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosyst 9:5–12

    Google Scholar 

  35. Dooling RJ, Popper AN (2007) The effects of highway noise on birds. Calif Dept Transport Div Environ Anal, Sacramento, pp 1–74

    Google Scholar 

  36. Evans JC, Dall SRX, Kight CR (2018) Effects of ambient noise on zebra finch vigilance and foraging efficiency. PLoS One 13:e0209471. https://doi.org/10.1371/journal.pone.0209471

    Article  PubMed  PubMed Central  Google Scholar 

  37. Feare C (1984) The starling. Oxford University Press, Oxford

    Google Scholar 

  38. Finnolia Sound Effects (2013) City ambience (Downtown cars, police siren, ambience background noise soundscape clip). On ambient sound effects. Helsinki: Finnolia Productions Inc

  39. Fowler GS (1999) Behavioral and hormonal responses of Magellanic penguins (Spheniscus magellanicus) to tourism and nest site visitation. Biol Conserv 90:143–149

    Google Scholar 

  40. Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11:305–313. https://doi.org/10.1890/120183

    Article  Google Scholar 

  41. Francis CD, Ortega CP, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19:1415–1419

    PubMed  CAS  Google Scholar 

  42. French SS, DeNardo DF, Greives TJ, Strand CR, Demas GE (2010a) Human disturbance alters endocrine and immune responses in the Galápagos marine iguana (Amblyrhynchus cristatus). Horm Behav 58:792–799

    PubMed  PubMed Central  CAS  Google Scholar 

  43. French SS, DeNardo DF, Greives TJ, Strand CR, Demas GE (2010b) Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus). Horm Behav 58:792–799

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Fuller RA, Warren PH, Gaston KJ (2007) Daytime noise predicts nocturnal singing in urban robins. Biol Lett 3:368–370

    PubMed  PubMed Central  Google Scholar 

  45. Grasman KA (2002) Assessing immunological function in toxicological studies of avian wildlife. Integr Comp Biol 42:34–42

    PubMed  CAS  Google Scholar 

  46. Gross WB, Siegel HS (1983) Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis 27:972–979. https://doi.org/10.2307/1590198

    Article  PubMed  CAS  Google Scholar 

  47. Halfwerk W, Holleman LJM, Lessells CM, Slabbekoorn H (2011) Negative impact of traffic noise on avian reproductive success. J Appl Ecol 48:210–219

    Google Scholar 

  48. Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P (2012) Telomere length in early life predicts lifespan. Proc Natl Acad Sci USA 109:1743–1748

    PubMed  CAS  Google Scholar 

  49. Inger R, Gregory R, Duffy JP, Stott I, Voříšek P, Gaston KJ (2014) Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol Lett 18:28–36

    PubMed  Google Scholar 

  50. Injaian AS, Taff CC, Patricelli GL (2018a) Experimental anthropogenic noise impacts avian parental behaviour, nestling growth and nestling oxidative stress. Anim Behav 136:31–39

    Google Scholar 

  51. Injaian AS, Taff CC, Pearson KL, Gin MM, Patricelli GL, Vitousek MN (2018b) Effects of experimental chronic traffic noise exposure on adult and nestling corticosterone levels, and nestling body condition in a free-living bird. Horm Behav 106:19–27

    PubMed  CAS  Google Scholar 

  52. Injaian AS, Gonzalez-Gomez PL, Taff CC, Bird AK, Ziur AD, Patricelli GL, Haussmann MF, Wingfield JC (2019) Traffic noise exposure alters nestling physiology and telomere attrition through direct, but not maternal, effects in a free-living bird. Gen Comp Endocrinol 276:14–21

    PubMed  CAS  Google Scholar 

  53. Kanitz E, Otten W, Tuchscherer M (2005) Central and peripheral effects of repeated noise stress on hypothalamic- pituitary-adrenocortical axis pigs. Livest Prod Sci 94:213–224

    Google Scholar 

  54. Kessel B (1957) A study of the breeding biology of the European Starling (Sturnus vulgaris L.) in North America. Am Midl Nat 58:257–331

    Google Scholar 

  55. Kight CR, Swaddle JP (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett 14:1052–1061

    PubMed  Google Scholar 

  56. Kight CR, Saha MS, Swaddle JP (2012) Anthropogenic noise is associated with reductions in the productivity of breeding Eastern Bluebirds (Sialia sialis). Ecol Appl 22:1989–1996

    PubMed  Google Scholar 

  57. King G, Roland-Mieszkowski M, Jason T, Rainham DG (2012) Noise levels associated with urban land use. J Urban Health Bull NY Acad Med 89:1017–1030

    Google Scholar 

  58. Koenig J, Shine R, Shea G (2002) The dangers of life in the city: patterns of activity, injury and mortality in suburban lizards (Tiliqua scincoides). J Herp 36:62–68

    Google Scholar 

  59. Kogut MH, Iqbal M, He H, Philbin V, Kaiser P, Smith A (2005) Expression and function of Toll-like receptors in chicken heterophils. Dev Comp Immun 29:791–807

    CAS  Google Scholar 

  60. Latham ADM, Latham PC (2011) Scavenging behaviour of common starlings (Sturnus vulgaris). Notornis 58:48–50

    Google Scholar 

  61. Lengagne T (2008) Traffic noise affects communication behaviour in a breeding anuran, Hyla arborea. Biol Conserv 141:2023–2031

    Google Scholar 

  62. Leonard ML, Horn AG (2005) Ambient noise and the design of begging signals. Proc R Soc Lond Ser B 272:651–656

    Google Scholar 

  63. Leonard ML, Horn AG (2008) Does ambient noise affect growth and begging call structure in nestling birds? Behav Ecol 19:502–507

    Google Scholar 

  64. Leonard ML, Horn AG (2012) Ambient noise increases missed detections in nestling birds. Biol Lett 8:530–532

    PubMed  PubMed Central  Google Scholar 

  65. Loss SR, Marra PP (2017) Population impacts of free-ranging domestic cats on mainland vertebrates. Front Ecol Environ 15:502–509

    Google Scholar 

  66. Loss SR, Will T, Marra PP (2013) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1396. https://doi.org/10.1038/ncomms2380

    Article  PubMed  CAS  Google Scholar 

  67. Lucas AM, Jamroz C (1961) Atlas of avian hematology. United States Department of Agriculture, Washington

    Google Scholar 

  68. Mallory ML, Little CM, Boyd ES, Ballard J, Elliott KH, Gilchrist HG, Hipfner M, Petersen A, Shutler D (2015) Leucocyte profiles of Arctic marine birds: correlates of migration and breeding phenology. Conserv Physiol 3:28. https://doi.org/10.1093/conphys/cov028

    Article  Google Scholar 

  69. Martinez-Mota R, Valdespino C, Sanchez-Ramos MA, Serio-Silva JC (2007) Effects of forest fragmentation on the physiological stress response of black howler monkeys. Anim Conserv 10:374–379

    Google Scholar 

  70. Maxwell MH (1993) Avian blood leukocyte response to stress. World’s Poult Sci J 49:34–43

    Google Scholar 

  71. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Google Scholar 

  72. Meillère A, Brischoux F, Angelier F (2015a) Impact of chronic noise exposure on antipredator behavior: an experiment in breeding house sparrows. Behav Ecol 26:569–577

    Google Scholar 

  73. Meillère A, Brischoux F, Ribout C, Angelier F (2015b) Traffic noise exposure affects telomere length in nestling house sparrows. Biol Lett 11:20150559. https://doi.org/10.1098/rsbl.2015.0559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Miller MW (2006) Apparent effects of light pollution on singing behavior of American Robins. Condor 108:130–139

    Google Scholar 

  75. Moreno J, Merino S, Martinez J, Sanz JJ, Arriero E (2002) Heterophil/lymphocyte ratios and heat-shock protein levels are related to growth in nestling birds. Ecoscience 9:434–439

    Google Scholar 

  76. Nichols TA, Anderson TW, Širović A (2015) Intermittent noise induces physiological stress in a coastal marine fish. PLoS One 10:e0139157. https://doi.org/10.1371/journal.pone.0139157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ots I, Murumägi A, Hõrak P (1998) Haematological health state indices of reproducing Great Tits: methodology and sources of natural variation. Funct Ecol 12:700–707

    Google Scholar 

  78. Owen JC, Moore FR (2006) Seasonal differences in immunological condition of three species of thrushes. Condor 108:389–398

    Google Scholar 

  79. Parks SE, Clark C, Tyack PL (2007) Short- and long-term changes in right whale calling behavior: the potential effects of noise on acoustic communication. J Acoust Soc Am. https://doi.org/10.1121/1.2799904

    Article  PubMed  Google Scholar 

  80. Parris KM, Schneider A (2009) Impacts of traffic noise and traffic volume on birds of roadside habitats. Ecol Society 14:29 (online) http://www.ecologyandsociety.org/vol14/iss1/art29/

  81. Parris KM, Velik-Lord M, North JMA (2009) Frogs call at a higher pitch in traffic noise. Ecol Society 14:25 (online). http://www.ecologyandsociety.org/vol14/iss1/art25/

  82. Potvin DA, Curcio MT, Swaddle JP, MacDougall-Shackleton SA (2016) Experimental exposure to urban and pink noise affects brain development and song learning in zebra finches (Taenopygia guttata). PeerJ 4:e2287. https://doi.org/10.7717/peerj.2287

    Article  PubMed  PubMed Central  Google Scholar 

  83. Quinn JL, Whittingham MJ, Butler SJ, Cresswell W (2006) Noise, predation risk compensation and vigilance in the chaffinch Fringilla coelebs. J Avian Biol 37:601–608

    Google Scholar 

  84. Raap T, Casasole G, Pinxten R, Eens M (2016) Early life exposure to artificial light at night affects the physiological condition: an experimental study on the ecophysiology of free-living nestling songbirds. Environ Pollut 218:909–914

    PubMed  CAS  Google Scholar 

  85. Raap T, Pinxten R, Casasole G, Dehnhard N, Eens M (2017) Ambient anthropogenic noise but not light is associated with the ecophysiology of free-living songbird nestlings. Sci Rep 7:2754

    PubMed  PubMed Central  Google Scholar 

  86. Rich EL, Romero LM (2005) Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am J Physiol-Reg Integr Comp Physiol 288:R1628–R1636

    CAS  Google Scholar 

  87. Riley SPD, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, Wayne RK (2003) Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv Biol 17:566–576

    Google Scholar 

  88. Romano TA, Keogh MJ, Kelly C, Feng P, Berk L, Schlundt CE, Carder DA, Finneran JJ (2004) Anthropogenic sound and marine mammal health: measures of the nervous and immune systems before and after intense sound exposure. Can J Fish Aquat Sci 61:1124–1134

    Google Scholar 

  89. Romero LM, Romero RC (2002) Corticosterone responses in wild birds: the importance of rapid initial sampling. Condor 104:129–135

    Google Scholar 

  90. Romero LM, Wikelski M (2002) Exposure to tourists reduces stress-induced corticosterone levels in Galápagos marine iguanas. Biol Conserv 108:371–374

    Google Scholar 

  91. Ruiz G, Rosenmann M, Fernando F, Novoa FF, Sabat P (2002) Hematological parameters and stress index in rufous-collared sparrows dwelling in urban environments. Condor 104:162–166

    Google Scholar 

  92. Safina C, Burger H (1983) Effects of human disturbance on reproductive success in the black skimmer. Condor 85:164–171

    Google Scholar 

  93. Salmón P, Nilsson J, Nord A, Bensch S, Isaksson C (2016) Urban environment shortens telomere length in nestling great tits, Parus major. Biol Lett 12:20160155

    PubMed  PubMed Central  Google Scholar 

  94. Slabbekoorn H, Peet M (2003) Ecology: birds sing at a higher pitch in urban noise. Nature 424:267

    PubMed  CAS  Google Scholar 

  95. Slabbekoorn H, Ripmeester EAP (2007) Birdsong and anthropogenic noise: implications and applications for conservation. Mol Ecol 17:72–83

    PubMed  Google Scholar 

  96. Stevens SS (1972) Perceived level of noise by Mark VII and decibels (E). J Acoust Soc Am 51:575–601

    Google Scholar 

  97. Swaddle JP, Kight CR, Perera S, Davila-Reyes E, Sikora S (2012) Constraints on acoustic signaling among birds breeding in secondary cavities: the effects of weather, cavity material, and noise on sound propagation. Auk 74:63–77

    Google Scholar 

  98. Tennessen JB, Parks SE, Langkilde T (2014) Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv Physiol. https://doi.org/10.1093/conphys/cou032

    Article  PubMed  PubMed Central  Google Scholar 

  99. Vleck CM, Vertalino N, Vleck D, Bucher TL (2010) Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adelie Penguins. Condor 102:392–400

    Google Scholar 

  100. Wingfield JC, Romero LM (2001) Adrenocortical responses to stress and their modulation in free-living vertebrates. Handb Physiol Sect 7:211–236

    Google Scholar 

  101. Wood WE, Yezerinac SM (2006) Song Sparrow (Melospiza melodia) song varies with urban noise. Auk 123:650–659

    Google Scholar 

  102. Yuill H (2014) The relationship between measures of stress and condition in nestling European starlings. Honours thesis, Saint Mary’s University, Halifax

Download references

Acknowledgements

We thank Celina Campbell, Elizabeth Lewis, and our volunteers who helped with field work, as well as Carmen Cranley, and Matt Logan for their assistance over the summer. We also thank the three reviewers who made many thoughtful suggestions and improved this manuscript. We are very grateful to Saint Mary’s University for logistical support, and for the following funding: Faculty of Science Dean’s Award (ARW), and a Faculty of Graduate Studies and Research Award (CAB). This work was conducted in compliance with the current Canadian laws.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Colleen A. Barber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by S. Kipper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walthers, A.R., Barber, C.A. Traffic noise as a potential stressor to offspring of an urban bird, the European Starling. J Ornithol 161, 459–467 (2020). https://doi.org/10.1007/s10336-019-01733-z

Download citation

Keywords

  • Anthropogenic noise
  • Traffic sound
  • Stress response
  • H/L ratio
  • European Starling
  • Urbanization
  • Habituation
  • Noise pollution