Journal of Ornithology

, Volume 160, Issue 2, pp 351–361 | Cite as

Minimum longevity and age-related male plumage in Darwin’s finches on Floreana Island

  • Ashley Langton
  • Sonia KleindorferEmail author
Original Article


Several Darwin’s finch populations on the Galapagos Islands are declining and/or locally extinct. Acoustic surveys provide useful information about population size, but do not provide information on the age or morphology of birds. This study uses mist netting data collected during 2004–2016 on Floreana Island with the aim of evaluating minimum longevity in Darwin’s finches. The study species are the Small Tree Finch (Camarhynchus parvulus), hybrid tree finches (Camarhynchus spp.), Medium Tree Finch (Camarhynchus pauper), and Small Ground Finch (Geospiza fuliginosa). In total, 1032 Darwin’s finches were mist netted and 86 of 707 males and 14 of 325 females were recaptured across years. We used the proportion of black plumage to age males, and the age at first capture plus the number of years between recapture to estimate minimum longevity. Minimum longevity ranged from 12 to 15 years and was lowest in the critically endangered C. pauper (12 years). The average number of years between first capture and last recapture was significantly lower in females than in males. Because long-term mist netting provides information on age structure, recruitment and longevity in males and females, it should be a key component of effective conservation planning.


Camarhynchus Geospiza Galapagos Monitoring Morphology Recruitment 


Mindestlebensdauer und altersassoziierte Männchenbefiederung von Darwin-Finken auf der Insel Floreana.

Einige Arten der Darwin-Finken auf den Galapagos-Inseln weisen rückläufige beziehungsweise lokal ausgestorbene Populationen auf. Akustische Untersuchungen liefern nützliche Informationen über die Populationsgröße, jedoch nicht über Alter und Morphologie. Diese Studie stützt sich auf Fangdaten, die im Zeitraum 2004–2016 mittels Japannetzen auf der Insel Floreana gesammelt wurden. Ziel der Studie ist, die artspezifische Mindestlebensdauer von vier Darwin-Finkenarten zu ermitteln. Die untersuchten Arten sind: Kleiner Baumfink (Camarhynchus parvulus), Hybrider Baumfink (Camarhynchus spp.), Mittlerer Baumfink (C. pauper) und Kleiner Grundfink (Geospiza fuliginosa). Insgesamt wurden 1032 Individuen gefangen, wobei 86 der 707 Männchen und 14 der 325 Weibchen über den Untersuchungszeitraum hinweg wiedergefangen wurden. Zur Altersschätzung der Männchen errechneten wir den schwarzen Gefiederanteil, und zur Schätzung der Mindestlebensdauer (ergo des Mindesthöchstalters) die Summe von „Erstfangalter“ und „Anzahl der Jahre zwischen Fang und Wiederfang“. Die Mindestlebensdauer lag zwischen 12 und 15 Jahren und war am niedrigsten bei C. pauper (12 Jahre). Die durchschnittliche Anzahl der Jahre zwischen Erstfang und letztem Wiederfang war bei Weibchen signifikant geringer als bei Männchen. Da langfristige Fang-Wiederfang-Studien Informationen über Altersstruktur, Populationsdynamik und Lebensdauer bei Männchen und Weibchen liefern, sollten sie einen zentralen Bestandteil in der effektiven Naturschutzplanung bilden.



For research support, we thank the Galapagos National Park Service and the Charles Darwin Research Station. For financial support, we thank the following organizations: the Australian Research Council, the Rufford Small Grant Foundation, the Mohamed bin Zayed Species Conservation Fund, the Max Planck Institute for Ornithology, the Royal Society for the Protection of Birds/Birdfair, the Earthwatch Institute and the Australian Federation of University Women (SA). For field assistance, we thank David Roldan Arango, Rebekah Christensen, Rachael Dudaniec, Jefferson Garcia Loor, Wesley Loo, Jody O’Connor, Katharina Peters, Jeremy Robertson, and David Wiedenfield. The authors declare that all experimental procedures in this study complied with the current laws of the Galapagos Islands and the Republic of Ecuador.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in the studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This study was approved by the Flinders University Animal Welfare Committee (E270, E393). This publication is contribution no. 2218 of the Charles Darwin Foundation for the Galapagos Islands.


  1. Aickin M, Gensler H (1996) Adjusting for multiple testing when reporting research results: the Bonferroni vs. Holm methods. Am J Public Health 86:726–728CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baiser B, Valle D, Zelazny Z, Burleigh JG (2018) Non-random patterns of invasion and extinction reduce phylogenetic diversity in island bird assemblages. Ecography 41:361–374CrossRefGoogle Scholar
  3. Bennett PM, Owens IP (2002) Evolutionary ecology of birds: life histories, mating systems and extinction. Oxford University Press, OxfordGoogle Scholar
  4. Bergan JF, Smith LM (1993) Survival rates of female Mallards wintering in the Playa Lakes Region. J Wildl Manage 57:570–577CrossRefGoogle Scholar
  5. Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958CrossRefPubMedGoogle Scholar
  6. Blums P, Nichols JD, Hines JE, Lindberg MS, Mednis A (2005) Individual quality, survival variation and patterns of phenotypic selection on body condition and timing of nesting in birds. Oecologia 143:365–376CrossRefPubMedGoogle Scholar
  7. Campbell SP et al (2002) An assessment of monitoring efforts in endangered species recovery plans. Ecol Appl 12:674–681CrossRefGoogle Scholar
  8. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Science Adv 1:e1400253CrossRefGoogle Scholar
  9. Chastel O, Weimerskirch H, Jouventin P (1995) Body condition and seabird reproductive performance: a study of three petrel species. Ecology 76:2240–2246CrossRefGoogle Scholar
  10. Clark TD, Kleindorfer S, Dudaniec RY (2018) Baseline and stress-induced blood properties of male and female Darwin’s Small Tree Finch (Geospiza fuliginosa) of the Galapagos Islands. Gen Comp Endocrinol 259:199–206CrossRefPubMedGoogle Scholar
  11. Colombelli-Négrel D, Kleindorfer S (2008) In Superb Fairy Wrens (Malurus cyaneus), nuptial males have more blood parasites and higher haemoglobin concentration than eclipsed males. Aust J Zool 56:117–121CrossRefGoogle Scholar
  12. Crone EE (2001) Is survivorship a better fitness surrogate than fecundity? Evolution 55:2611–2614CrossRefPubMedGoogle Scholar
  13. Darwin C (1837) Notebook B: [Transmutation of species (1837–1838)]. CULDAR121. Darwin Online.
  14. Ducatez S, Shine R (2017) Drivers of extinction risk in terrestrial vertebrates. Conserv Lett 10:186–194CrossRefGoogle Scholar
  15. Dudaniec RY, Fessl B, Kleindorfer S (2007) Interannual and interspecific variation in intensity of the parasitic fly, Philornis downsi, in Darwin’s finches. Biol Conserv 139:325–332CrossRefGoogle Scholar
  16. Dvorak M, Fessl B, Nemeth E, Kleindorfer S, Tebbich S (2012) Distribution and abundance of Darwin’s finches and other land birds on Santa Cruz Island, Galápagos: evidence for declining populations. Oryx 46:78–86CrossRefGoogle Scholar
  17. Dvorak M et al (2017) Conservation status of landbirds on Floreana: the smallest inhabited Galapagos Island. J Field Ornithol 88:132–145CrossRefGoogle Scholar
  18. Fessl B, Couri MS, Tebbich S (2001) Philornis downsi Dodge & Aitken, new to the Galapagos Islands (Diptera, Muscidae). Studia Dipterologica 8(1):317–322Google Scholar
  19. Fessl B, Sinclair BJ, Kleindorfer S (2006) The life-cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin's finches and its impacts on nestling survival. Parasitology 133(6):739–747CrossRefPubMedGoogle Scholar
  20. Fessl B, Heimpel GE, Causton CE (2018) Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: colonization history, adaptations to novel ecosystems, and conservation challenges. In: Parker PG (ed) Disease ecology Galapagos birds and their parasites. Springer, Dordrecht, pp 213–266CrossRefGoogle Scholar
  21. Galligan TH, Kleindorfer S (2010) Loss of assortative pairing following colonization of a new environment by Darwin’s Small Tree Finch (Geospiza fuliginosa). Evolut Ecol Res 12:751–760Google Scholar
  22. Galligan TH, Donnellan SC, Sulloway FJ, Fitch AJ, Bertozzi T, Kleindorfer S (2012) Panmixia supports divergence with gene flow in Darwin’s Small Tree Finch, Geospiza fuliginosa, on Santa Cruz, Galápagos Islands. Mol Ecol 21:2106–2115CrossRefPubMedGoogle Scholar
  23. Ghalambor CK, Martin TE (2001) Fecundity-survival trade-offs and parental risk-taking in birds. Science 292:494–497CrossRefPubMedGoogle Scholar
  24. Grant BR, Grant PR (1989) Evolutionary dynamics of a natural population: the large cactus finch of the Galápagos. University of Chicago PressGoogle Scholar
  25. Grant PR, Grant BR (1992) Demography and the genetically effective sizes of two populations of Darwin’s finches. Ecology 73:766–784CrossRefGoogle Scholar
  26. Grant BR, Grant PR (2010) Songs of Darwin’s finches diverge when a new species enters the community. Proc Natl Acad Sci 107:20156–20163CrossRefPubMedGoogle Scholar
  27. Haselmayer J, Quinn JS (2000) A comparison of point counts and sound recording as bird survey methods in Amazonian southeast Peru. Condor 102:887–893CrossRefGoogle Scholar
  28. Kirkwood TB, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B 205:531–546CrossRefPubMedGoogle Scholar
  29. Kleindorfer S (2007) Nesting success in Darwin’s Small Tree Finch, Camarhynchus parvulus: evidence of female preference for older males and more concealed nests. Anim Behav 74:795–804CrossRefGoogle Scholar
  30. Kleindorfer S, Dudaniec RY (2016) Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin’s finch hosts. BMC Zool 1:1CrossRefGoogle Scholar
  31. Kleindorfer S, Sulloway FJ (2016) Naris deformation in Darwin’s finches: experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi. Glob Ecol Conserv 7:122–131CrossRefGoogle Scholar
  32. Kleindorfer S, Chapman TW, Winkler H, Sulloway F (2006) Adaptive divergence in contiguous populations of Darwin’s Small Tree Finch (Geospiza fuliginosa). Evol Ecol Res 8:357–372Google Scholar
  33. Kleindorfer S, O’Connor JA, Dudaniec RY, Myers SA, Robertson J, Sulloway FJ (2014a) Species collapse via hybridization in Darwin’s tree finches. Am Nat 183:325–341CrossRefPubMedGoogle Scholar
  34. Kleindorfer S, Peters KJ, Custance G, Dudaniec RY, O’Connor JA (2014b) Changes in Philornis infestation behavior threaten Darwin’s finch survival. Current Zoology 60:542–550CrossRefGoogle Scholar
  35. Kleindorfer S, Peters KJ, Hohl L, Sulloway FJ (2016) Flight behaviour of an introduced parasite affects its Galapagos Island hosts: Philornis downsi and Darwin’s finches. In: Weis JS, Sol D (eds) Biological invasions and animal behaviour. Cambridge University Press, Cambridge, pp 158–179CrossRefGoogle Scholar
  36. Lecomte VJ, Sorci G, Cornet S, Jaeger A, Faivre B, Arnoux E, Gaillard M, Trouvé C, Besson D, Chastel O, Weimerskirch H (2010) Patterns of aging in the long-lived Wandering Albatross. Proc Natl Acad Sci 107:6370–6375CrossRefPubMedGoogle Scholar
  37. Lloyd P, Abadi F, Altwegg R, Martin TE (2014) South temperate birds have higher apparent adult survival than tropical birds in Africa. J Avian Biol 45:493–500CrossRefGoogle Scholar
  38. Møller A (2006) Sociality, age at first reproduction and senescence: comparative analyses of birds. J Evolut Biol 19:682–689CrossRefGoogle Scholar
  39. Newton SF (1993) Body condition of a small passerine bird: ultrasonic assessment and significance in overwinter survival. J Zool 229:561–580CrossRefGoogle Scholar
  40. Nur N, Geupel GR (1993) Evaluation of mist-netting, nest-searching and other methods for monitoring demographic processes in landbird populations. In: Finch DM, Stangel PW (eds) Status and management of neotropical migratory birds: September 21–25, 1992, Estes Park, Colorado. Gen. Tech. Rep. RM-229. Fort Collins, Colo.: Rocky Mountain Forest and Range Experiment Station, US Dept. of Agriculture, Forest Service: 237–244, 229Google Scholar
  41. O’Connor JA, Sulloway FJ, Kleindorfer S (2010a) Avian population survey in the Floreana highlands: is Darwin’s Medium Tree Finch declining in remnant patches of Scalesia forest? Bird Conserv Int 20:343–353CrossRefGoogle Scholar
  42. O’Connor JA, Sulloway FJ, Robertson J, Kleindorfer S (2010b) Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin’s Medium Tree Finch (Camarhynchus pauper). Biodivers Conserv 19:853–866CrossRefGoogle Scholar
  43. O’Connor JA, Dudaniec RY, Kleindorfer S (2010c) Parasite infestation and predation in Darwin’s Small Tree Finch: contrasting two elevational habitats between islands. J Trop Ecol 26:285–292CrossRefGoogle Scholar
  44. Peters A (2000) Testosterone treatment is immunosuppressive in Superb Fairy-Wrens, yet free–living males with high testosterone are more immunocompetent. Proc R Soc Lond B Biol Sci 267:883–889CrossRefGoogle Scholar
  45. Peters KJ, Kleindorfer S (2015) Divergent foraging behavior in a hybrid zone: Darwin’s tree finches (Camarhynchus spp.) on Floreana Island. Curr Zool 61:181–190CrossRefGoogle Scholar
  46. Peters KJ, Kleindorfer S (2017) Avian population trends in Scalesia forest on Floreana Island (2004–2013): acoustical surveys cannot detect hybrids of Darwin’s tree finches Camarhynchus spp. Bird Conserv Int 28:319–335CrossRefGoogle Scholar
  47. Peters A, Astheimer LB, Boland CR, Cockburn A (2000) Testosterone is involved in acquisition and maintenance of sexually selected male plumage in Superb Fairy-Wrens, Malurus cyaneus. Behav Ecol Sociobiol 47:438–445CrossRefGoogle Scholar
  48. Peters KJ, Myers S, Dudaniec R, O’Connor J, Kleindorfer S (2017) Females drive asymmetrical introgression from rare to common species in Darwin’s tree finches. J Evol Biol 30:1940–1952CrossRefPubMedGoogle Scholar
  49. Price TD (1984) Sexual selection on body size, territory and plumage variables in a population of Darwin’s finches. Evolution 38:327–341CrossRefPubMedGoogle Scholar
  50. Przybylo R, Sheldon BC, Merilä J (2000) Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J Anim Ecol 69:395–403CrossRefGoogle Scholar
  51. Ricklefs RE (2000) Intrinsic aging-related mortality in birds. J Avian Biol 31:103–111CrossRefGoogle Scholar
  52. Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584–606CrossRefGoogle Scholar
  53. Silva PR, Silva AM, de Melo C (2017) Male Helmeted Manakins (Antilophia galeata) with more colorful crowns have better body conditions. Wilson J Ornithol 129:158–163CrossRefGoogle Scholar
  54. Sulloway FJ (1984) Darwin and the Galapagos. Biol J Lin Soc 21:29–59CrossRefGoogle Scholar
  55. Sulloway FJ, Kleindorfer S (2013) Adaptive divergence in Darwin’s Small Tree Finch (Geospiza fuliginosa): divergent selection along a cline. Biol J Lin Soc 110:45–59CrossRefGoogle Scholar
  56. Tear TH, Scott JM, Hayward PH, Griffith B (1995) Recovery plans and the Endangered Species Act: are criticisms supported by data? Conserv Biol 9:182–195CrossRefGoogle Scholar
  57. Weimerskirch H (1992) Reproductive effort in long-lived birds: age-specific patterns of condition, reproduction and survival in the Wandering Albatross. Oikos 64:464–473CrossRefGoogle Scholar
  58. Yamada K, Soma M (2016) Diet and birdsong: short-term nutritional enrichment improves songs of adult Bengalese Finch males. J Avian Biol 47:865–870CrossRefGoogle Scholar
  59. Zając T, Solarz W, Bielański W (2006) Adaptive settlement in Sedge Warblers Acrocephalus schoenobaenus—focus on the scale of individuals. Acta Oecol 29:123–134CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.College of Science and EngineeringFlinders UniversityAdelaideAustralia
  2. 2.Konrad Lorenz Forschungsstelle and Department of Behavioural BiologyUniversity of ViennaViennaAustria

Personalised recommendations