No adverse effects on Lesser Spotted Eagle breeding in an area of high White-tailed Eagle density

Abstract

Mesopredators frequently suffer lethal and/or non-lethal negative effects when breeding in sympatry with more powerful apex predators. The recent recovery of the White-tailed Eagle Haliaeetus albicilla (WTE) population throughout its range indicates the return of the largest predator of the raptor communities there. In this study, we assess the importance of habitat overlap and spatial distribution to the reproduction of the Lesser Spotted Eagle Clanga pomarina (LSE), a species that breeds sympatrically in areas of high WTE density near the Baltic Sea, but is three times smaller than the latter. Fewer water bodies surround the nesting sites of the LSE, and it uses agricultural areas and transitional habitats more frequently than the WTE. The same breeding territories are faithfully occupied by the LSE annually, irrespective of the distance between these and those of the WTE. We found that the breeding success of the LSE was not affected by the proximity or breeding output of the nearest pair of WTEs, nor was this affected by the number of WTE pairs present within a 3-km radius of nests. Our data suggest that the smaller LSE coexists with an abundant top predator without any obvious adverse effects on its population dynamics.

Zusammenfassung

In Gebieten mit hoher Seeadler-Dichte zu brüten, hat für Schreiadler keine Nachteile

Schwächeren Greifvögeln entstehen oft tödliche oder fast-tödliche Nachteile, wenn sie sympatrisch mit deutlich stärkeren Greifvögeln brüten. Die Erholung der Seeadlerpopulationen (Haliaeetus albicilla) in letzter Zeit bedeutete eine Rückkehr des größten aller Greifvögel. In dieser Studie untersuchten wir, wie wichtig Habitatüberlappung und räumliche Verteilung für den Fortpflanzungserfolg des nur ein Drittel so großen Schreiadlers (Clanga pomarina) sind, der sympatrisch mit Seeadlern in Gebieten nahe der Ostsee brütet, in denen die Seeadlerdichte besonders hoch ist. Im Vergleich zu den Seeadlern gab es um die Brutplätze der Schreiadler herum weniger Gewässer, und sie nutzten landwirtschaftlich genutzte Flächen und Übergangshabitate häufiger als die Seeadler. Unabhängig von ihrem Abstand zu den Seeadlern benutzten die Schreiadler jedes Jahr genau die gleichen Brutplätze. Der Fortpflanzungserfolg der Schreiadler war unbeeinträchtigt von der Entfernung zum nächstgelegenen Seeadlerpaar und dessen Bruterfolg wie auch von der Anzahl von Seeadlerpaaren innerhalb eines Umkreises von 3 km. Unsere Ergebnisse legen nahe, dass der kleinere Schreiadler ohne feststellbaren Nachteil für seine Populationsdynamik mit großen Greifvögeln koexistieren kann.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bartoń K (2013) MuMIn: multi-model inference. R package version 1.9.13. CRAN. http://CRAN.Rproject.org/package=MuMIn

  2. Bates D, Maechler M, Bolker B (2013) lme4: linear-mixed effects models using S4 classes. Retrieved from: http://CRAN.R-project.org/package=lme4 (R package version 0.999999-2)

  3. Björklund H, Santangeli A, Blanchet FG, Huitu O, Lehtoranta H, Lindén H, Valkama J, Laaksonen T (2016) Intraguild predation and competition impacts on a subordinate predator. Oecologia 181:257–269

    Article  Google Scholar 

  4. Bloom PH, Clark WS, Kidd JW (2006) Capture techniques. In: Bird DM, Bildstein KL (eds) Raptor research and management techniques. Hancock House, Blaine, pp 193–219

    Google Scholar 

  5. Burnham K, Anderson D (2002) Model selection and multimodel inference a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  6. Chakarov N, Krüger O (2010) Mesopredator release by an emergent superpredator: a natural experiment of predation in a three level guild. PLoS One 5(12):e15229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Collopy MW (1984) Parental care and feeding ecology of Golden Eagle nestlings. Auk 101:753–760

    Article  Google Scholar 

  8. Dementavičius D (2004) Common Buzzard (Buteo buteo) and White-tailed Eagle (Haliaeetus albicilla): breeding parasitism or atypical feeding behaviour? Acta Zool Lituan 14:76–79

    Article  Google Scholar 

  9. Drobelis E (2004) Lietuvos miškų plėšrieji paukščiai [Birds of prey of Lithuania forests]. Aplinkos ministerija, Vilnius

    Google Scholar 

  10. Ekblad CMS, Sulkava S, Stjernberg TG, Laaksonen TK (2016) Landscape-scale gradients and temporal changes in the prey species of the White-tailed Eagle (Haliaeetus albicilla). Ann Zool Fenn 53:228–240

    Article  Google Scholar 

  11. ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  12. Gamauf A, Tebb G, Nemeth E (2013) Honey Buzzard Pernis apivorus nest-site selection in relation to habitat and the distribution of Goshawks Accipiter gentilis. Ibis 155:258–270

    Article  Google Scholar 

  13. Helander B (1983) Reproduction of the White-tailed Sea Eagle Haliaeetus albicilla (L.) in Sweden, in relation to food and residue levels of organochlorine and mercury compounds in the eggs. Ph.D. thesis, Department of Zoology, University of Stockholm, Stockholm

  14. Helander B (1985) Reproduction of the White-tailed Sea Eagle Haliaeetus albicilla in Sweden. Holarct Ecol 8:211–227

    Google Scholar 

  15. Helander B, Stjernberg T (2002) Action plan for the conservation of White-tailed Sea Eagle (Haliaeetus albicilla). BirdLife International, Strasbourg

    Google Scholar 

  16. Heuck C, Herrmann C, Schabo DG, Brandl R, Albrecht J (2017) Density-dependent effects on reproductive performance in a recovering population of White-tailed Eagles Haliaeetus albicilla. Ibis 159:297–310

    Article  Google Scholar 

  17. Heymann Y, Steenmans C, Croissille G, Bossard M (1994) CORINE land cover. Technical guide. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  18. Hoy SR, Petty SJ, Millon A, Whitfield DP, Marquiss M, Anderson DIK, Davison M, Lambin X (2017) Density-dependent increase in superpredation linked to food limitation in a recovering population of Northern Goshawks Accipiter gentilis. J Avian Biol 48:1205–1215

    Article  Google Scholar 

  19. Kajtoch Ł, Żmihorski M, Wieczorek P (2015) Habitat displacement effect between two competing owl species in fragmented forests. Popul Ecol 57:517–527

    Article  Google Scholar 

  20. Kareksela S, Härmä O, Lindstedt C, Siitari H, Suhonen J (2013) Effect of Willow Tit Poecile montanus alarm calls on attack rates by Pygmy Owls Glaucidium passerinum. Ibis 155:407–412

    Article  Google Scholar 

  21. Korpimäki E, Huhtala K, Sulkava S (1990) Does the year-to-year variation in the diet of Eagle and Ural Owls support the alternative prey hypothesis? Oikos 58:47–54

    Article  Google Scholar 

  22. Lourenço R, Penteriani V, Rabaça JE, Korpimäki E (2014) Lethal interactions among vertebrate top predators: a review of concepts, assumptions and terminology. Biol Rev 89:270–283

    Article  PubMed  Google Scholar 

  23. Mečionis R, Jusys V (1994) The White-tailed Eagle (Haliaëtus albicilla) at Kuršių lagoon. Acta Ornithol Lituan. 9–10:138–142

    Google Scholar 

  24. Meyburg B-U, Meyburg C, Matthes J, Matthes H (2007) Heimzug, verspätete Frühjahrsankunft, vorübergehender Partnerwechsel und Bruterfolg beim Schreiadler Aquila pomarina. Vogelwelt 128:21–31

    Google Scholar 

  25. Michel VT, Jiménez-Franco MV, Naef-Daenzer B, Grüebler MU (2016) Intraguild predator drives forest edge avoidance of a mesopredator. Ecosphere 7(3):e01229

    Article  Google Scholar 

  26. Mikkola H (1976) Owls killing and killed by other owls and raptors in Europe. Br Birds 69:144–154

    Google Scholar 

  27. Morosinotto C, Villers A, Thomson RL, Varjonen R, Korpimäki E (2017) Competitors and predators alter settlement patterns and reproductive success of an intraguild prey. Ecol Monogr 87:4–20

    Article  Google Scholar 

  28. Mueller AK, Chakarov N, Heseker H, Krüger O (2016) Intraguild predation leads to cascading effects on habitat choice, behaviour and reproductive performance. J Anim Ecol 85:774–784

    Article  PubMed  Google Scholar 

  29. Müller M, Lauth T (2006) Aufzucht eines jungen Mäusebussards Buteo buteo in einer Brut des Seeadlers Haliaeetus albicilla endet nicht erfolgreich. Orn Rundbrief Meckl-Vorp 45:399–401

    Google Scholar 

  30. Nadjafzadeh M, Hofer H, Krone O (2016) Sit-and-wait for large prey: foraging strategy and prey choice of White-tailed Eagles. J Ornithol 157:165–178

    Article  Google Scholar 

  31. Neumann J, Schwarz J (2017) Seeadlerpaar mit besonderer Vorliebe für junge Mäusebussarde. Teil 3. Großvogelschutz im Wald 28–30

  32. Newton I (2003) The role of natural factors in the limitation of birds of prey numbers: a brief review of the evidence. In: Thompson DBA, Redpath SM, Fielding AH, Marquiss M, Galbraith CA (eds) Birds of prey in a changing environment. Stationery Office, Edinburgh, pp 5–24

    Google Scholar 

  33. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  34. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  35. Rebollo S, Martínez-Hesterkamp S, García-Salgado G, Pérez-Camacho L, Fernández-Pereira JM, Jenness J (2017) Spatial relationships and mechanisms of coexistence between dominant and subordinate top predators. J Avian Biol 48:1226–1237

    Article  Google Scholar 

  36. Sándor A, Alexe V, Marinov M, Doroşencu A, Domşa C, Kiss BJ (2015) Nest-site selection, breeding success, and diet of White-tailed Eagles (Haliaeetus albicilla) in the Danube Delta, Romania. Turk J Zool 39:300–307

    Article  CAS  Google Scholar 

  37. Scheller W, Bergmanis U, Meyburg BU, Furkert B, Knack A, Roper S (2001) Raum-Zeit-Verhalten des Schreiadlers (Aquila pomarina). Acta Ornithoecol 4:75–236

    Google Scholar 

  38. Sergio F, Hiraldo F (2008) Intraguild predation in raptor assemblages: a review. Ibis 150(Suppl. 1):132–145

    Article  Google Scholar 

  39. Sergio F, Marchesi L, Pedrini P (2003) Spatial refugia and the coexistence of a diurnal raptor with its intraguild owl predator. J Anim Ecol 72:232–245

    Article  Google Scholar 

  40. Sergio F, Marchesi L, Pedrini P, Penteriani V (2007) Coexistence of a generalist owl with its intraguild predator: distance-sensitive or habitat-mediated avoidance? Anim Behav 74:1607–1616

    Article  Google Scholar 

  41. Steen R, Sonerud G, Slagsvold T (2012) Parents adjust feeding effort in relation to nestling age in the Eurasian Kestrel (Falco tinnunculus). J Ornithol 153:1087–1099

    Article  Google Scholar 

  42. Struwe-Juhl B (2000) Funkgestützte Synchronbeobachtung—eine geeignete Methode zur Bestimmung der Aktionsräume von Großvogelarten (Ciconiidae, Haliaeetus) in der Brutzeit. Popul Ecol Raptor Owl 4:101–110

    Google Scholar 

  43. Struwe-Juhl B (2003) Why do White-tailed Eagles prefer coots? In: Helander B, Marquiss M, Bowerman B (eds) Sea Eagle 2000:317–325. Swedish Society for Nature Conservation, Stockholm, Sweden

    Google Scholar 

  44. Sulkava S, Tornberg R, Koivusaari J (1997) Diet of the White-tailed Eagle Haliaeetus albicilla in Finland. Ornis Fenn 74:65–78

    Google Scholar 

  45. Terraube J, Bretagnolle V (2018) Top-down limitation of mesopredators by avian top predators: a call for research on cascading effects at the community and ecosystem scale. Ibis 160:693–702

    Article  Google Scholar 

  46. Treinys R (2015) Species action plan for the Lesser Spotted Eagle. Accepted by the Ministry of Environment of the Republic of Lithuania, 27 February 2015, by order no. D1-185

  47. Treinys R, Dementavičius D (2004) Productivity and diet of Lesser Spotted Eagle (Aquila pomarina) in Lithuania. Acta Zool Lituan 14:83–87

    Article  Google Scholar 

  48. Treinys R, Dementavičius D, Mozgeris G, Skuja S, Rumbutis S, Stončius D (2011) Coexistence of protected avian predators: does a recovering population of White-tailed Eagle threaten to exclude other avian predators? Eur J Wildl Res 57:1165–1174

    Article  Google Scholar 

  49. Treinys R, Dementavičius D, Rumbutis S, Sorokaite J, Brazaitis G (2012) Species action plan for the White-tailed Eagle. Accepted by the Ministry of Environment of the Republic of Lithuania, 1 February 2012, by order no. D1-106

  50. Treinys R, Dementavičius D, Rumbutis S, Švažas S, Butkauskas D, Sruoga A, Dagys M (2016) Settlement, habitat preference, reproduction, and genetic diversity in recovering the White-tailed Eagle Haliaeetus albicilla population. J Ornithol 157:311–323

    Article  Google Scholar 

  51. Treinys R, Väli Ü, Berganis U (2017) Strong territoriality and weak density-dependent reproduction in Lesser Spotted Eagles Clanga pomarina. Ibis 159:343–351

    Article  Google Scholar 

  52. Väli Ü, Dombrovski V, Treinys R, Bergmanis U, Daróczi SJ, Dravecky M, Ivanovski V, Lontkowski J, Maciorowski G, Meyburg BU, Mizera T, Zeitz R, Ellegren H (2010) Widespread hybridization between the Greater Spotted Eagle Aquila clanga and the Lesser Spotted Eagle Aquila pomarina (Aves: Accipitriformes) in Europe. Biol J Lin Soc 100:725–736

    Article  Google Scholar 

  53. Väli Ü, Bergmanis U (2017) Apparent survival rates of adult Lesser Spotted Eagles Clanga pomarina estimated by GPS-tracking, colour rings and wing-tags. Bird Study 64:104–107

    Article  Google Scholar 

  54. Väli Ü (2018) Timing of breeding events of the Lesser Spotted Eagle Clanga pomarina as revealed by remote cameras and GPS-tracking. Ardea. https://doi.org/10.5253/arde.v106i1.a

    Article  Google Scholar 

  55. Whitfield DP, Marquiss M, Reid R, Grant J, Tingay R, Evans RJ (2013) Breeding season diets of sympatric White-tailed Eagles and Golden Eagles in Scotland: no evidence for competitive effects. Bird Study 60:67–76

    Article  Google Scholar 

  56. Zub K, Pugacewicz E, Jędrzejewska B, Jędrzejewski W (2010) Factors affecting habitat selection by breeding Lesser Spotted Eagles Aquila pomarina in northeastern Poland. Acta Ornithol 45:105–114

    Article  Google Scholar 

  57. Zuberogoitia I, Martínez JE, Zabala J, Martínez JA, Azkona A, Castillo I, Hidalgo S (2008) Social interactions between two owl species sometimes associated with intraguild predation. Ardea 96:109–113

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Phil Whitfield and an anonymous reviewer for their valuable contributions, which greatly improved early drafts of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rimgaudas Treinys.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by O. Krüger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dementavičius, D., Rumbutis, S., Vaitkuvienė, D. et al. No adverse effects on Lesser Spotted Eagle breeding in an area of high White-tailed Eagle density. J Ornithol 160, 453–461 (2019). https://doi.org/10.1007/s10336-019-01625-2

Download citation

Keywords

  • Interspecific interaction
  • Coexistence
  • Competition
  • Raptor
  • Top predator
  • Mesopredator