Skip to main content
Log in

Offspring sex ratio is unrelated to parental quality and time of breeding in a multiple-breeding shorebird

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Sex ratio is a fundamental concept in evolutional biology, and theory predicts that parents should invest in sons and daughters according to the fitness returns they expect from them. The fitness returns may depend on the timing of breeding and on parental conditions leading to sex ratios that depend on breeding date and/or parental quality. Here, we investigate the offspring sex ratio in a small shorebird, the Kentish Plover Charadrius alexandrinus, in a large breeding population in Eastern China, and test whether the parents adjust their offspring’s sex in response to hatch date, brood age and their own body condition. Using 1264 chicks from 676 broods that were molecularly sexed, we show that hatchling sex ratio was not significantly different from unity. Hatchling sex ratios were not related to hatch date or to the body condition of parents. In addition, we sexed 138 eggs that were confiscated from illegal egg collectors and found that the mortality of female and male embryos was not significantly different. The latter result is important by suggesting that neither primary sex ratio (i.e., at conception) nor secondary sex ratio (i.e., at hatching) is biased. Taken together, the even offspring sex ratio in Chinese Kentish Plovers is consistent with recent analyses of six plover populations that found even sex ratios at hatching. Future works should investigate whether the even sex ratio persists into adulthood, or it may shift toward more males (or females) due to sex-biased mortalities of juveniles and/or adults.

Zusammenfassung

Das Geschlechterverhältnis des Nachwuchses einer Küstenlimikole ist unabhängig von den Eigenschaften der Eltern und dem Brutzeitbeginn

Das Geschlechterverhältnis ist ein fundamentales Konzept der Evolutionsbiologie, und die Theorie sagt voraus, dass Eltern in Söhne und Töchter proportional zu dem von ihnen erwarteten Fitnessertrag investieren sollten. Der Fitnessertrag hängt möglicherweise vom Brutzeitbeginn und der elterlichen Qualität ab, was dazu führen kann, dass das Geschlechterverhältnis selbst vom Beginn der Brutzeit und den Eigenschaften der Eltern abhängt. Hier untersuchen wir das Geschlechterverhältnis des Nachwuchses einer kleinen Küstenvogelart, dem Seeregenpfeifer Charadrius alexandrinus, in einer großen Brutpopulation in Ostchina und testen, ob die Eltern das Geschlechterverhältnis ihres Nachwuchses dem Schlüpfzeitpunkt, Brutalter und den eigenen körperlichen Bedingungen anpassen. Mittels 1264 Küken aus 676 Bruten, die alle molekular geschlechtsbestimmt waren, zeigen wir, dass das Geschlechterverhältnis nicht signifikant von gleichförmig abwich. Das Geschlechterverhältnis beim Schlupf war weder vom Schlüpfzeitpunkt noch von der Körperkondition der Eltern abhängig. Zusätzlich bestimmten wird das Geschlecht von 138 Eiern, die von illegalen Eisammlern beschlagnahmt wurden, und fanden, dass die Sterblichkeit von weiblichen und männlichen Embryos nicht signifikant verschieden war. Dies zeigt, dass weder das primäre Geschlechterverhältnis (bei der Zeugung) noch das sekundäre Geschlechterverhältnis (beim Schlupf) unausgeglichen sind. Das ausgeglichene Geschlechterverhältnis in den chinesischen Seeregenpfeifern stimmt mit jüngsten Ergebnissen von sechs Regenpfeiferpopulationen überein, die auch ausgeglichene Geschlechterverhältnisse beim Schlupf fanden. Zukünftige Arbeiten sollten untersuchen, ob das ausgeglichene Geschlechterverhältnis bis in das Erwachsenenalter fortbesteht, oder ob es sich zu mehr Männchen (oder Weibchen) verschiebt aufgrund von geschlechtsabhängigen Sterberaten von Jung- und/oder Altvögeln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arroyo B (2002) Sex-biased nestling mortality in the Montagu’s Harrier Circus pygargus. J Avian Biol 33:455–460

    Article  Google Scholar 

  • Barton K (2015) MuMIn: multi-model inference. http://cran.r-project.org/web/packages/MuMIn/index.html

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bell SC, Owens IP, Lord AM (2014) Quality of breeding territory mediates the influence of paternal quality on sex ratio bias in a free-living bird population. Behav Ecol 25:352–358

    Article  Google Scholar 

  • Bize P, Roulin A, Tella JL, Richner H (2005) Female-biased mortality in experimentally parasitized Alpine Swift Apus melba nestlings. Funct Ecol 19:405–413

    Article  Google Scholar 

  • Booksmythe I, Mautz B, Davis J, Nakagawa S, Jennions MD (2017) Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biol Rev 92:108–134

    Article  PubMed  Google Scholar 

  • Bordier C, Saraux C, Viblanc VA, Gachot-Neveu H, Beaugey M, Le Maho Y, Le Bohec C (2014) Inter-annual variability of fledgling sex ratio in King Penguins. PLoS One 9:e114052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers EK, Thompson CF, Sakaluk SK (2015) Persistent sex-by-environment effects on offspring fitness and sex-ratio adjustment in a wild bird population. J Anim Ecol 84:473–486

    Article  PubMed  Google Scholar 

  • Bowers EK, Thompson CF, Sakaluk SK (2017) Maternal natal environment and breeding territory predict the condition and sex ratio of offspring. Evol Biol 44:11–20

    Article  PubMed  Google Scholar 

  • Burley N (1981) Sex ratio manipulation and selection for attractiveness. Science 211:721–722

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and interference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Carmona-Isunza MC, Ancona S, Székely T, Ramallo-González AP, Cruz-López M, Serrano-Meneses MA, Küpper C (2017) Adult sex ratio and operational sex ratio exhibit different temporal dynamics in the wild. Behav Ecol 28:523–532

    Google Scholar 

  • Cooper NW, Sherry TW, Marra PP (2015) Experimental reduction of winter food decreases body condition and delays migration in a long-distance migratory bird. Ecology 96:1933–1942

    Article  PubMed  Google Scholar 

  • Daan S, Dijkstra C, Weissing FJ (1996) An evolutionary explanation for seasonal trends in avian sex ratios. Behav Ecol 7:426–430

    Article  Google Scholar 

  • Darwin C (1871) The descent of man and selection in relation to sex. Murray, London

    Book  Google Scholar 

  • Donald PF (2007) Adult sex ratios in wild bird populations. Ibis 149:671–692

    Article  Google Scholar 

  • Eberhart-Phillips LJ, Küpper C, Miller TE, Cruz-López M, Maher KH, Dos Remedios N, Stoffel MA, Hoffman JI, Krüger O, Székely T (2017) Sex-specific early survival drives adult sex ratio bias in Snowy Plovers and impacts mating system and population growth. Proc Natl Acad Sci USA 117:E5474–E5481

    Article  CAS  Google Scholar 

  • Eberhart-Phillips LJ, Küpper C, Carmona-Isunza MC, Vincze O, Zefania S, Cruz-López M, Kosztolányi A, Miller TE, Barta Z, Cuthill IC, Burke T (2018) Demographic causes of adult sex ratio variation and their consequences for parental cooperation. Nat Commun 9:1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellegren H, Gustafsson L, Sheldon BC (1996) Sex ratio adjustment in relation to parental attractiveness in a wild bird population. Proc Natl Acad Sci USA 93:11723–11728

    Article  CAS  PubMed  Google Scholar 

  • Fiala KL (1981) Sex ratio constancy in the Red-winged Blackbird. Evolution 35:898–910

    Article  PubMed  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection: a complete variorum edition. Oxford University Press, Oxford

    Book  Google Scholar 

  • Fraga RM, Amat JA (1996) Breeding biology of a Kentish Plover (Charadrius alexandrinus) population in an inland saline lake. Ardeola 43:69–85

    Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 1:116–121

    Article  Google Scholar 

  • Goławski A, Kasprzykowski Z, Ledwoń M, Mróz E, Morelli F (2016) Brood sex ratio in expansive and non-expansive tern species in east-central Poland. Bird Study 63:31–36

    Article  Google Scholar 

  • Gomendio M, Clutton-Brock TH, Albon SD, Guinness FE, Simpson MJ (1990) Mammalian sex ratios and variation in costs of rearing sons and daughters. Nature 343:261–263

    Article  CAS  PubMed  Google Scholar 

  • Hall LK, Cavitt JF (2012) Comparative study of trapping methods for ground-nesting shorebirds. Waterbirds 35:342–346

    Article  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  CAS  Google Scholar 

  • Hardy ICW (2002) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hayman P, Marchant J, Prater T (1986) Shorebirds. An identification guide to the waders of the world. Helm, London

    Google Scholar 

  • Heinsohn R, Langmore NE, Cockburn A, Kokko H (2011) Adaptive secondary sex ratio adjustments via sex-specific infanticide in a bird. Curr Biol 21:1744–1777

    Article  CAS  PubMed  Google Scholar 

  • Hewison AJM, Gaillard JM (1999) Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends Ecol Evol 14:229–234

    Article  CAS  PubMed  Google Scholar 

  • Hipkiss T, Hornfeldt B, Eklund U, Berlin S (2002) Year-dependent sex-biased mortality in supplementary-fed Tengmalm’s Owl nestlings. J Anim Ecol 71:693–699

    Article  Google Scholar 

  • Howe HF (1977) Sex-ratio adjustment in the Common Grackle. Science 198:744–746

    Article  Google Scholar 

  • Kalmbach E, Benito MM (2007) Sexual size dimorphism and offspring vulnerability in birds. In: Fairbairn DJ, Blanckenhorn WU, Székely T (eds) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, Oxford, pp 133–142

    Chapter  Google Scholar 

  • Kalmbach E, Furness RW, Griffiths R (2005) Sex-biased environmental sensitivity: natural and experimental evidence from a bird species with larger females. Behav Ecol 16:442–449

    Article  Google Scholar 

  • Kokko H, Jennions MD (2008) Parental investment, sexual selection and sex ratios. J Evol Biol 21:919–948

    Article  PubMed  Google Scholar 

  • Kölliker M, Heeb P, Werner I, Mateman AC, Lessells CM, Richner H (1999) Offspring sex ratio is related to male body size in the Great Tit (Parus major). Behav Ecol 10:68–72

    Article  Google Scholar 

  • Kosztolányi A, Barta Z, Küpper C, Székely T (2011) Persistence of an extreme male-biased adult sex ratio in a natural population of polyandrous bird. J Evol Biol 24:1842–1846

    Article  PubMed  Google Scholar 

  • Küpper C, Augustin J, Kosztolányi A, Burke T, Flguerola J, Székely T (2009) Kentish versus Snowy Plover: phenotypic and genetic analyses of Charadrius alexandrinus reveal divergence of Eurasian and American subspecies. Auk 126:839–852

    Article  Google Scholar 

  • Lehikoinen A, Öst M, Hollmén T, Kilpi M (2008) Does sex-specific duckling mortality contribute to male bias in adult common eiders? Condor 110:574–578

    Article  Google Scholar 

  • Lei W (2017) Studies on the waterbirds used saltpans in north of Bohai Bay. Dissertation, Beijing Normal University

  • Leimar O (1996) Life-history analysis of the Trivers and Willard sex-ratio problem. Behav Ecol 7:316–325

    Article  Google Scholar 

  • Lessells CM (1984) The mating system of Kentish Plovers Charadrius alexandrinus. Ibis 126:474–483

    Article  Google Scholar 

  • Lessells CM, Mateman AC, Visser J (1996) Great Tit hatchling sex ratios. J Avian Biol 1:135–142

    Article  Google Scholar 

  • Liebezeit JR, Smith PA, Lanctot RB, Schekkerman H, Tulp I, Kendall SJ, Tracy DM, Rodrigues RJ, Meltofte H, Robinson JA, Gratto-Trevor C (2007) Assessing the development of shorebird eggs using the flotation method: species-specific and generalized regression models. Condor 109:32–47

    Article  Google Scholar 

  • Liker A, Freckleton RP, Székely T (2013) The evolution of sex roles in birds is related to adult sex ratio. Nat Commun 4:1587

    Article  CAS  PubMed  Google Scholar 

  • Liker A, Freckleton RP, Székely T (2014) Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr Biol 24:880–884

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zeng X, Du B (2013) Body attributes of both parents jointly affect offspring sex allocation in a socially monogamous, size-monomorphic passerine. Curr Zool 59:271–277

    Article  Google Scholar 

  • Maddox JD, Weatherhead PJ (2009) Seasonal sex allocation by Common Grackles? Revisiting a foundational study. Ecology 90:3190–3196

    Article  PubMed  Google Scholar 

  • McIntosh RR, Kats R, Berg M, Komdeur J, Elgar MA (2003) Breeding ecology and bias in offspring sex ratio in Little Grassbirds (Megalurus gramineus). Aust J Zool 51:505–514

    Article  Google Scholar 

  • Minias P (2016) Seasonal trends in brood sex ratio reflect changes in early-life physiological condition of chicks in the Whiskered Tern. Ethol Ecol Evol 28:385–393

    Article  Google Scholar 

  • Myers JH (1978) Sex ratio adjustment under food stress: maximization of quality or numbers of offspring. Am Nat 112:381–388

    Article  Google Scholar 

  • Orzack SH, Stubblefield JW, Akmaev VR, Colls P, Munné S, Scholl T, Steinsaltz D, Zuckerman JE (2015) The human sex ratio from conception to birth. Proc Natl Acad Sci USA 112:E2102–E2111

    Article  CAS  PubMed  Google Scholar 

  • Page GW, Quinn PL, Warriner JC (1989) Comparison of the breeding of hand-and wild-reared Snowy Plovers. Conserv Biol 3:198–201

    Article  Google Scholar 

  • Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891

    Article  Google Scholar 

  • Peig J, Green AJ (2010) The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct Ecol 24:1323–1332

    Article  Google Scholar 

  • Pen I, Weissing FJ, Daan S (1999) Seasonal sex ratio trend in the European kestrel: an evolutionarily stable strategy analysis. Am Nat 153:384–397

    Article  PubMed  Google Scholar 

  • Que P (2015) Breeding success and population genetic structure of Kentish Plover Charadrius alexandrinus in China. Dissertation, Beijing Normal University

  • Que P, Chang Y, Eberhart-Phillips L, Liu Y, Székely T, Zhang Z (2015) Low nest survival of a breeding shorebird in Bohai Bay, China. J Ornithol 156:297–307

    Article  Google Scholar 

  • Råberg L, Stjernman M, Nilsson JÅ (2005) Sex and environmental sensitivity in Blue Tit nestlings. Oecologia 145:496–503

    Article  PubMed  Google Scholar 

  • Ramula S, Öst M, Lindén A, Karell P, Kilpi M (2018) Increased male bias in eider ducks can be explained by sex-specific survival of prime-age breeders. PLoS ONE 13:e0195415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redfern CPF, Clark JA (2001) Ringers’ manual. British Trust for Ornithology, Thetford

    Google Scholar 

  • Riordan MM, Lukacs PM, Huyvaert KP, Dreitz VJ (2015) Sex ratios of Mountain Plovers from egg production to fledging. Avian Conserv Ecol 10:3

    Article  Google Scholar 

  • Robertson BC, Gemmell NJ (2006) PCR-based sexing in conservation biology: wrong answers from an accurate methodology? Conserv Genet 7:267–271

    Article  CAS  Google Scholar 

  • Romano A, Romano M, Caprioli M, Costanzo A, Parolini M, Rubolini D, Saino N (2015) Sex allocation according to multiple sexually dimorphic traits of both parents in the Barn Swallow (Hirundo rustica). J Evol Biol 28:1234–1247

    Article  CAS  PubMed  Google Scholar 

  • Saalfeld ST, Conway WC, Haukos DA, Johnson WP (2013) Seasonal variation in offspring sex ratio in the Snowy Plover. West N Am Nat 73:60–71

    Article  Google Scholar 

  • Saunders SP, Cuthbert FJ (2015) Chick mortality leads to male-biased sex ratios in endangered Great Lakes Piping Plovers. J Field Ornithol 86:103–114

    Article  Google Scholar 

  • Schacht R, Kramer KL, Székely T, Kappeler PM (2017) Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies. Philos Trans R Soc B 372:1729

    Google Scholar 

  • Sheldon BC, Andersson S, Griffith SC, Örnborg J, Sendecka J (1999) Ultraviolet colour variation influences Blue Tit sex ratios. Nature 402:874–877

    Article  CAS  Google Scholar 

  • Smallwood PD, Smallwood JA (1998) Seasonal shifts in sex ratios of fledgling American Kestrels (Falco sparverius paulus): the early bird hypothesis. Evol Ecol 12:839–853

    Article  Google Scholar 

  • Stenzel LE, Page GW, Warriner JC, Warriner JS, Neuman KK, George DE, Eyster CR, Bidstrup FC (2011) Male-skewed adult sex ratio, survival, mating opportunity and annual productivity in the Snowy Plover Charadrius alexandrinus. Ibis 153:312–322

    Article  Google Scholar 

  • Székely T (2014) Sexual conflict between parents: offspring desertion and asymmetrical parental care. In: Rice WR, Gavrilets S (eds) The genetics and biology of sexual conflict. Cold Spring Harbor Laboratory Press, New York, pp 245–263

    Google Scholar 

  • Székely T, Cuthill IC (1999) Brood desertion in the Kentish Plover: the value of parental care. Behav Ecol 10:191–197

    Article  Google Scholar 

  • Székely T, Lessells CM (1993) Mate change by Kentish Plovers Charadrius alexandrinus. Ornis Scand 24:317–322

    Article  Google Scholar 

  • Székely T, Cuthill IC, Kis J (1999) Brood desertion in Kentish Plover: sex differences in remating opportunities. Behav Ecol 10:185–190

    Article  Google Scholar 

  • Székely T, Cuthill IC, Yezerinac S, Griffiths R, Kis J (2004) Brood sex ratio in the Kentish Plover. Behav Ecol 15:58–62

    Article  Google Scholar 

  • Székely T, Kosztolányi A, Küpper C (2008) Practical guide for investigating breeding ecology of Kentish Plover Charadrius alexandrinus. University of Bath. http://www.bath.ac.uk/bio-sci/biodiversity-lab/pdfs/KP_Field_Guide_v3.pdf. Accessed 2 Feb 2015

  • Székely T, Liker A, Freckleton RP, Fichtel C, Kappeler PM (2014a) Sex-biased survival predicts adult sex ratio variation in wild birds. Proc R Soc Lond B 281:20140342

    Article  Google Scholar 

  • Székely T, Weissing FJ, Komdeur J (2014b) Adult sex ratio variation: implications for breeding system evolution. J Evol Biol 27:1500–1512

    Article  PubMed  Google Scholar 

  • Tan LXL, Buchanan KL, Maguire GS, Weston MA (2015) Cover, not caging, influences chronic physiological stress in a ground-nesting bird. J Avian Biol 46:482–488

    Article  Google Scholar 

  • Trivers RL (1985) Social evolution. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    Article  CAS  PubMed  Google Scholar 

  • van der Velde M, Haddrath O, Verkuil YI, Baker AJ, Piersma T (2017) New primers for molecular sex identification of waders. Wader Study 124:147–151

    Google Scholar 

  • Weatherhead PJ (1983) Secondary sex ratio adjustment in Red-winged Blackbirds (Agelaius phoeniceus). Behav Ecol Sociobiol 12:57–61

    Article  Google Scholar 

  • West S (2009) Sex allocation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Whittingham LA, Dunn PO (2000) Offspring sex ratios in Tree Swallows: females in better condition produce more sons. Mol Ecol 9:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Wiersma P, Kirwan GM, Boesman P (2018) Kentish Plover (Charadrius alexandrinus). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (ed) Handbook of the birds of the world alive. Lynx, Barcelona. http://www.hbw.com/node/53835. Accessed 22 Jan 2018

  • Yang H, Chen B, Barter M, Piersma T, Zhou C, Li F, Zhang Z (2011) Impacts of tidal land reclamation in Bohai Bay, China: ongoing losses of critical Yellow Sea waterbird staging and wintering sites. Bird Conserv Int 21:241–259

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (nos. 31600297 and 31572288). We especially thank Zhiwei Tian and Jianli Song, who provided much help in the fieldwork. We are grateful to Yajing Chang, Bingrun Zhu, Jin Liu, Jia Zheng, Boshi Liang, Siyuan Huang, Karen Kim, Siyao Zhong, Zhuoxue Chen, Guang Yang, Pei Luo, Christopher Dudley, Carrie Wendt, Rebecca Gouge, Robert Weber, Kai Chen, Xiaoyan Long, Nan Zhang, and Xuecong Zhang for field assistance. We also thank Xunqiang Mo and Jianmin Wang for intercepting the illegal egg collectors and bringing the confiscated eggs to us. We thank Dr. Benjamin Werner for translating the abstract to German. Tamás Székely was a fellow of the Advanced Institute of Berlin at the time of writing the manuscript, and his work was funded by a Royal Society Wolfson Merit Award (WM170050), and by the Hungarian scientific funding agency, NKFIH (ÉLVONAL KKP-126949, K-116310). All experiments described in this study comply with current Chinese laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwang Zhang.

Additional information

Communicated by O. Krüger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Que, P., Székely, T., Wang, P. et al. Offspring sex ratio is unrelated to parental quality and time of breeding in a multiple-breeding shorebird. J Ornithol 160, 443–452 (2019). https://doi.org/10.1007/s10336-018-1620-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-018-1620-6

Keywords

Navigation