Journal of Ornithology

, Volume 160, Issue 1, pp 281–285 | Cite as

Asymmetric iris heterochromia in birds: the dark crescent of buttonquails

  • Carlos Gutiérrez-ExpósitoEmail author
Short Communication


I describe for the first time the unique coloured pattern of the iris of buttonquails (Turnicidae). This unique pattern is due to the presence of a dark-brown crescent in the iris below the pupil, whose form and extent varies in response to light conditions. This dark crescent is present in the eyes of all individuals of Turnix species at every life stage, a consistency that has not been previously observed for the iridal marks found in other avian groups. This consistency suggests that the crescent-shaped spot in buttonquails’ eyes is a character subjected to natural selection, probably related to light regulation. This possibility deserves further study.


Turnix Vision Light regulation Natural selection Pupil 


Asymmetrische Iris-Heterochromie bei Vögeln: der dunkle Halbmond der Laufhühnchen

Dies ist die Erstbeschreibung eines einzigartigen Musters der Irisfärbung bei Laufhühnchen (Turnicidae). Dieses beruht auf dem Vorhandensein eines dunkelbraunen Halbmondes in der Iris unterhalb der Pupille, dessen Form und Ausmaß sich in Abhängigkeit von den Lichtbedingungen ändern. Diesen dunklen Halbmond findet man in den Augen aller Individuen sämtlicher Turnix-Arten in allen Lebensphasen, eine Durchgängigkeit, welche bisher noch für keine der Irisflecken anderer Vogelgruppen beobachtet wurde. Diese Kontinuität spricht zudem dafür, dass dieser halbmondförmige Fleck in den Augen der Laufhühnchen ein Merkmal ist, welches der natürlichen Selektion unterliegt, vielleicht im Zusammenhang mit der Lichtregulation, eine Möglichkeit, welche eine nähere Untersuchung verdient.



The Haut Commissariat aux Eaux et Forêts et à la Lutte contre la Desertification authorised the surveys done in Morocco, and Abdeljebbar Qninba helped with all the logistics. The ZooBotánico de Jerez gave me the opportunity to study the captive birds. Daniel López Velasco and Marcel Holyoak shared their high-quality photographs of the Quail-plover; Jacinto Román helped with preparation of the figures, and Eloy Revilla, Miguel Clavero, Pedro Jordano, Miguel Delibes and two anonymous reviewers made very valuable comments on the manuscript. The author was funded by a grant (BES-2015-074938) from the Severo Ochoa Program to the Centres of Excellence in R + D + I (SEV-2012-0262-01) of the Spanish Ministry of Economy and Competitiveness.


  1. Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (1999) Adaptive mechanisms in the ecology of vision. Springer-Science and Business Media BV, BerlinCrossRefGoogle Scholar
  2. Baker AJ, Paton TA, Perereira SL (2007) Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biol Lett 3:205–209CrossRefGoogle Scholar
  3. Burtt EH (1984) Colour of the upper mandible: an adaptation to reduce reflectance. Anim Behav 32(3):652–658CrossRefGoogle Scholar
  4. Ficken RW, Matthiae PE, Horwich R (1971) Eye masks in vertebrates: aids to vision. Science 173:936–939CrossRefGoogle Scholar
  5. Gill F, Donsker D (2018) IOC world bird list (version 81).
  6. Gorman G (2011) The Black Woodpecker. A monograph on Dryocopus martius. Lynx, BarcelonaGoogle Scholar
  7. Guzzetti BM, Talbot SL, Tessler DF, Gill VA, Murphy EC (2008) Secrets in the eyes of Black Oystercatchers: a new sexing technique. J Field Ornithol 79:215–223CrossRefGoogle Scholar
  8. Madge S, McGowan P (2002) Pheasants, partridges and grouse. A guide to the pheasants, partridges, quails, grouse, guineafowl, buttonquails and sandgrouse of the world. Helm, LondonGoogle Scholar
  9. Mainster MA, Turner PL (2012) Glare’s causes, consequences, and clinical challenges after a century of ophthalmic study. Am J Ophthalmol 153:587–593CrossRefGoogle Scholar
  10. Mathieson MT, Smith GC (2009) National recovery plan for the Buff-breasted Button-quail Turnix olivii. Report to Department of the Environment, Water, Heritage and the Arts, Canberra Department of Environment and Resource Management, BrisbaneGoogle Scholar
  11. Morris JGL, Morris DK (2014) Clinical letter: sectoral heterochromia of the iris in pigeons. Aust Veterin J 92(4):21–22Google Scholar
  12. Murube J (2013) Ocular cosmetics in ancient times. Ocular Surface 11:2–7. CrossRefGoogle Scholar
  13. Oliphant LW, Hudon J (1993) Pteridines as reflecting pigments and components of reflecting organelles in vertebrates. Pigment Cell Res 6:205–208. CrossRefGoogle Scholar
  14. Ortolani A (1999) Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biol J Linnean Soc 67:433–476. CrossRefGoogle Scholar
  15. Tapsoba I, Arbault S, Walter P, Amatore C (2010) Finding out Egyptian Gods’ secret using analytical chemistry: biomedical properties of Egyptian black makeup revealed by amperometry at single cells. Anal Chem 82(2):457–460CrossRefGoogle Scholar
  16. Thumann G (2001) Development and cellular functions of the iris pigment epithelium. Surv Ophthalmol 45:345–354. CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Conservation Biology DepartmentEstación Biológica de Doñana-CSICSevilleSpain

Personalised recommendations