Advertisement

Journal of Ornithology

, Volume 159, Issue 4, pp 935–944 | Cite as

Albatross chicks reveal interactions of adults with artisanal longline fisheries within a short range

  • Jean-Baptiste ThiebotEmail author
  • Bungo Nishizawa
  • Fumio Sato
  • Naoki Tomita
  • Yutaka Watanuki
Original Article

Abstract

Incidental capture in fisheries (“bycatch”) is a major threat to global marine biodiversity, especially to those species with low fecundity, such as albatrosses. Efforts to reduce bycatch have been undertaken in industrial fisheries, but the scale of seabird interactions with artisanal or small-scale fleets remains largely unknown. The island of Torishima (Japan) is an important breeding site for two albatross species (short-tailed Phoebastria albatrus and black-footed P. nigripes) and also lies in the range of the artisanal longline fishery for the splendid alfonsino Beryx splendens. In February–March 2017, we tracked 23 foraging trips of adult P. nigripes feeding chicks by Global Positioning System (GPS) and monitored the prevalence of fishing gear at the nests using a metal detector. The foraging range of these albatrosses was a maximum of 280 km from Torishima, and only 3.7% of the GPS locations occurred over the shallow habitats targeted by the alfonsino fishery (water depth 150–500 m), suggesting relatively low risks of interaction. However, 190 (54.3%) nests of P. nigripes contained fishing gear, among which 12 (3.4%) nests or chicks contained a hook or an unidentified metallic object. Six hooks were also collected from P. albatrus nests. All found hooks, except one, originated from the alfonsino fishery, indicating that both targeted albatross species actually interacted with this fishery at sea. Both research approaches provided data from returning birds only and did not reflect possible lethal cases at sea. Monitoring the sub-lethal effects of bycatch and encouraging small-scale fisheries to report gear lost at sea are two possibilities to further help quantify and reduce the impact of fisheries on seabirds.

Keywords

Artisanal fisheries Phoebastria albatrosses Seabird–fisheries interactions Longline Bio-logging Northwest Pacific 

Zusammenfassung

Albatros-Küken machen Interaktionen zwischen den adulten Tieren und der mittelständischen Langleinen-Fischerei in Küstennähe sichtbar

Unbeabsichtigter Beifang in der Fischerei stellt eine massive Bedrohung für die marine Biodiversität dar, besonders für Arten mit niedriger Fruchtbarkeit wie die Albatrosse. Die industrielle Fischerei unternimmt Versuche, den Beifang zu reduzieren, aber die Wechselwirkungen zwischen Seevögeln und den kleineren, mittelständischen Fischereiflotten sind noch weitgehend unbekannt. Torishima (Japan) ist ein wichtiges Brutgebiet für zwei Albatrosarten (Kurzschwanzalbatros Phoebastria albatrus und Schwarzfußalbatros Phoebastria nigripes) und liegt im Bereich der mittelständischen Langleinen-Fischerei auf den Glänzenden Schleimkopf (Beryx splendens). Im Februar und März 2017 verfolgten wir per GPS 23 Nahrungssuche-Flüge von fütternden Schwarzfuß-Albatrossen und kontrollierten mit einem Metalldetektor, ob es bei den Nestern Fischereigerät oder Teile davon gab. Die Albatrosse suchten ihre Nahrung innerhalb von 280 km Entfernung von Torishima, und nur 3.7% aller GPS-Ortungen lagen über den seichten Habitaten der Schleimköpfe und den Fischern (150–500 m), was ein relativ niedriges Risiko für Interaktionen bedeuten könnte. Aber 190 (54.3%) aller Nester der Schwarzfuß-Albatrosse enthielten Teile von Fischereigerät, und 12 (3.4%) von diesen, oder Küken, enthielten einen Haken oder ein nicht identifizierbares Metallstück. Auch in sechs Nestern des Kurzschwanz-Albatros wurden Haken gefunden. Alle Haken bis auf einen stammten von der Schleimkopf-Fischerei, woraus geschlossen werden kann, dass es auf See in der Tat Interaktionen zwischen beiden Albatros-Arten und der Fischerei gibt. Beiden Untersuchungen lagen Daten von zurückkehrenden Vögeln zugrunde; sie machen also keine Aussagen über mögliche Todesfälle auf dem Wasser. Es wäre wünschenswert, die sublethalen Auswirkungen des Beifangs weiter zu untersuchen und die mittelständische Fischereiindustrie aufzufordern, Informationen über auf See verlorenes Fischereigerät zu geben, um den Einfluss der Fischerei auf Seevögel besser quantifizieren und verringern zu können.

Notes

Acknowledgements

We thank Satoshi and Miwa Konno for their invaluable help in the field, and the crew of the fishing boat Housei Maru from Hachijojima for kindly transporting us to/from Torishima. The authors also thank Akinori Takahashi for his involvement in the organization of the field trips.

Funding

The study was funded by the Japan Society for the Promotion of Science (KAKENHI Grant-in-Aid #26304029 and #15K14439, to Y. Watanuki) and the Japan Ministry of the Environment (to the Yamashina Institute for Ornithology).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. Permits to capture and tag birds on Torishima were obtained through the Japan Ministry of the Environment and Agency for Cultural Affairs, and Tokyo Metropolitan Government. Animal Ethics approvals were obtained through Hokkaido University.

Supplementary material

(Video) A case of detected metal inside a chick. The observer (B Nishizawa) first tests the sensitivity of the metal detector on his wristwatch, then checks the area around and inside the nest, and finally passes the detector against the chick’s belly. Video taken by JB Thiebot (MP4 54893 kb)

References

  1. Adachi K, Takagi K, Tanaka E, Yamada S, Kitakado T (2000) Age and growth of Alfonsino Beryx splendens in the waters around the Izu Islands. Fish Sci 66:232–240CrossRefGoogle Scholar
  2. Agreement on the Conservation of Albatrosses and Petrels (2009) Species assessment: Short-tailed Albatross Phoebastria albatrus. http://www.acap.aq. Accessed 8 June 2018
  3. Agreement on the Conservation of Albatrosses and Petrels (2010) Species assessments: Black-footed Albatross Phoebastria nigripes. http://www.acap.aq. Accessed 8 June 2018
  4. Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. National Oceanic and Atmospheric Administration (NOAA) Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, Silver Spring.  https://doi.org/10.7289/v5c8276m. Accessed 19 February 2018
  5. Anderson OR, Small CJ, Croxall JP, Dunn EK, Sullivan BJ, Yates O, Black A (2011) Global seabird bycatch in longline fisheries. Endang Species Res 14:91–106CrossRefGoogle Scholar
  6. Bartholomew DC, Mangel JC, Alfaro-Shigueto J, Pingo S, Jimenez A, Godley BJ (2018) Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries. Biol Conserv 219:35–45CrossRefGoogle Scholar
  7. Belda EJ, Sanchez A (2001) Seabird mortality on longline fisheries in the western Mediterranean: factors affecting bycatch and proposed mitigating measures. Biol Conserv 98:357–363CrossRefGoogle Scholar
  8. BirdLife International (2018) IUCN Red List for birds. http://www.birdlife.org. Accessed 11 March 2017
  9. Brothers N (1991) Albatross mortality and associated bait loss in the Japanese longline fishery in the Southern Ocean. Biol Conserv 55:255–268CrossRefGoogle Scholar
  10. Brothers NP, Cooper J, Løkkeberg S (1999) The incidental catch of seabirds by longline fisheries: worldwide review and technical guidelines for mitigation. FAO Fisheries Circular 937. Food and Agriculture Organisation of the United Nations, RomeGoogle Scholar
  11. Cortés V, González-Solís J (2018) Seabird bycatch mitigation trials in artisanal demersal longliners of the Western Mediterranean. PLoS One 13(5):e0196731CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cortés V, Arcos JM, González-Solís J (2017) Seabirds and demersal longliners in the northwestern Mediterranean: factors driving their interactions and bycatch rates. Mar Ecol Prog Ser 565:1–16CrossRefGoogle Scholar
  13. Cortés V, García-Barcelona S, González-Solís J (2018) Sex-and age-biased mortality of three shearwater species in longline fisheries of the Mediterranean. Mar Ecol Prog Ser 588:229–241CrossRefGoogle Scholar
  14. Fernández P, Anderson DJ, Sievert PR, Huyvaert KP (2001) Foraging destinations of three low-latitude albatross (Phoebastria) species. J Zool 254:391–404CrossRefGoogle Scholar
  15. Fischer KN, Suryan RM, Roby DD, Balogh GR (2009) Post-breeding season distribution of black-footed and Laysan albatrosses satellite-tagged in Alaska: inter-specific differences in spatial overlap with North Pacific fisheries. Biol Conserv 142:751–760CrossRefGoogle Scholar
  16. Fisheries Agency, Government of Japan (2009) Japan’s National Plan of Action for Reducing Incidental Catch of Seabirds in Longline Fisheries, Revised Version. FAO non-serial publications. http://www.fao.org/fishery/docs/DOCUMENT/IPOAS/national/japan/NPOA-seabirds.pdf. Accessed 5 March 2018
  17. Gianuca D, Phillips RA, Townley S, Votier SC (2017) Global patterns of sex-and age-specific variation in seabird bycatch. Biol Conserv 205:60–76CrossRefGoogle Scholar
  18. Gilman E, Kobayashi D, Chaloupka M (2008) Reducing seabird bycatch in the Hawaii longline tuna fishery. Endang Species Res 5:309–323CrossRefGoogle Scholar
  19. Hall MA, Alverson DL, Metuzals KI (2000) By-catch: problems and solutions. Mar Poll Bull 41:204–219CrossRefGoogle Scholar
  20. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952CrossRefPubMedGoogle Scholar
  21. Hyrenbach KD, Dotson RC (2003) Assessing the susceptibility of female black-footed albatross (Phoebastria nigripes) to longline fisheries during their post-breeding dispersal: an integrated approach. Biol Conserv 112:391–404CrossRefGoogle Scholar
  22. Hyrenbach KD, Fernández P, Anderson DJ (2002) Oceanographic habitats of two sympatric North Pacific albatrosses during the breeding season. Mar Ecol Prog Ser 233:283–301CrossRefGoogle Scholar
  23. Iwamoto T, McEachran JD, Polanco Fernandez A, Moore J, Russell B (2015) Beryx splendens. The IUCN Red List of threatened species 2015: e.T16425354A16510182. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T16425354A16510182.en. Accessed 11 March 2018
  24. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LV, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638CrossRefPubMedGoogle Scholar
  25. Jiménez S, Domingo A, Brazeiro A, Defeo O, Phillips RA (2015) Marine debris ingestion by albatrosses in the southwest Atlantic Ocean. Mar Poll Bull 96:149–154CrossRefGoogle Scholar
  26. Kappes MA, Shaffer SA, Tremblay Y, Foley DG, Palacios DM, Bograd SJ, Costa DP (2015) Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species. Mov Ecol 3:34CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kawakami K, Suzuki H, Horikoshi K, Chiba H, Fukuda A, Higuchi H (2006) The foraging ranges of black-footed albatross Diomedea nigripes breeding in the Bonin Islands, southern Japan, as determined by GPS tracking. Ornithol Sci 5:187–191CrossRefGoogle Scholar
  28. Lascelles BG, Taylor PR, Miller MGR, Dias MP, Oppel S, Torres L, Hedd A, Le Corre M, Phillips RA, Shaffer SA, Weimerskirch H, Small C (2016) Applying global criteria to tracking data to define important areas for marine conservation. Diversity Distrib 22:422–431CrossRefGoogle Scholar
  29. Lewison RL, Crowder LB (2003) Estimating fishery bycatch and effects on a vulnerable seabird population. Ecol Appl 13:743–753CrossRefGoogle Scholar
  30. Lewison RL, Crowder LB, Read AJ, Freeman SA (2004) Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol Evol 19:598–604CrossRefGoogle Scholar
  31. Løkkeborg S (2011) Best practices to mitigate seabird bycatch in longline, trawl and gillnet fisheries—efficiency and practical applicability. Mar Ecol Prog Ser 435:285–303CrossRefGoogle Scholar
  32. Makino M, Matsuda H (2005) Co-management in Japanese coastal fisheries: institutional features and transaction costs. Mar Policy 29:441–450CrossRefGoogle Scholar
  33. Matsuda H, Makino M, Tomiyama M, Gelcich S, Castilla JC (2010) Fishery management in Japan. Ecol Res 25:899–907CrossRefGoogle Scholar
  34. Pante E, Simon-Bouhet B (2013) marmap: A package for importing, plotting and analyzing bathymetric and topographic Data in R. PLoS One 8:e73051CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pauly D (2006) Major trends in small scale fisheries, with emphasis on developing countries, and some implications for the social sciences. Maritime Stud 4:7–22Google Scholar
  36. Phillips RA, Ridley C, Reid K, Pugh PJ, Tuck GN, Harrison N (2010) Ingestion of fishing gear and entanglements of seabirds: monitoring and implications for management. Biol Conserv 143:501–512CrossRefGoogle Scholar
  37. Phillips RA, Gales R, Baker GB, Double MC, Favero M, Quintana F, Tasker ML, Weimerskirch H, Uhart M, Wolfaardt A (2016) The conservation status and priorities for albatrosses and large petrels. Biol Conserv 201:169–183CrossRefGoogle Scholar
  38. Robertson G, Moreno C, Arata JA, Candy SG, Lawton K, Valencia J, Wienecke B, Kirkwood R, Taylor P, Suazo CG (2014) Black-browed albatross numbers in Chile increase in response to reduced mortality in fisheries. Biol Conserv 169:319–333CrossRefGoogle Scholar
  39. Sullivan BJ, Kibel B, Kibel P, Yates O, Potts JM, Ingham B, Domingo A, Gianuca D, Jiménez S, Lebepe B, Maree BA, Neves T, Peppes F, Rasehlomi T, Silva-Costa A, Wanless RM (2018) At-sea trialling of the Hookpod: a ‘one-stop’ mitigation solution for seabird bycatch in pelagic longline fisheries. Anim Conserv 21:159–167.  https://doi.org/10.1111/acv.12388 CrossRefGoogle Scholar
  40. Suryan RM, Dietrich KS, Melvin EF, Balogh GR, Sato F, Ozaki K (2007) Migratory routes of short-tailed albatrosses: Use of exclusive economic zones of North Pacific Rim countries and spatial overlap with commercial fisheries in Alaska. Biol Conserv 137:450–460CrossRefGoogle Scholar
  41. Takeuchi H (2014) Synopsis of biological data on the alfonsino Beryx splendens, with notes on its fishery and stock management in Kanagawa Prefecture, Japan. Bull Kanagawa Pref Fish Tec Cen 14:17–35 (in Japanese)Google Scholar
  42. Thiebot JB, Delord K, Marteau C, Weimerskirch H (2014) Stage-dependent distribution of the critically endangered Amsterdam albatross in relation to Economic Exclusive Zones. Endang Species Res 23:263–276CrossRefGoogle Scholar
  43. Thiebot JB, Demay J, Marteau C, Weimerskirch H (2015) The rime of the modern mariner: evidence for capture of yellow-nosed albatross from Amsterdam Island in Indian Ocean longline fisheries. Polar Biol 38:1297–1300CrossRefGoogle Scholar
  44. Thiebot JB, Delord K, Barbraud C, Marteau C, Weimerskirch H (2016) 167 individuals versus millions of hooks: bycatch mitigation in longline fisheries underlies conservation of Amsterdam albatrosses. Aquat Conserv Mar Freshw Ecosyst 26:674–688CrossRefGoogle Scholar
  45. Tsurita I, Hori J, Kunieda T, Hori M, Makino M (2018) Marine protected areas, Satoumi, and territorial use rights for fisheries: a case study from hinase, Japan. Mar Policy 91:41–48CrossRefGoogle Scholar
  46. Weimerskirch H, Brothers N, Jouventin P (1997) Population dynamics of wandering albatross Diomedea exulans and Amsterdam albatross D. amsterdamensis in the Indian Ocean and their relationships with long-line fisheries: conservation implications. Biol Conserv 79:257–270CrossRefGoogle Scholar
  47. Weimerskirch H, Filippi DP, Collet J, Waugh SM, Patrick SC (2018) Use of radar detectors to track attendance of albatrosses at fishing vessels. Conserv Biol 32:240–245CrossRefPubMedGoogle Scholar
  48. Wilson SM, Raby GD, Burnett NJ, Hinch SG, Cooke SJ (2014) Looking beyond the mortality of bycatch: sublethal effects of incidental capture on marine animals. Biol Conserv 171:61–72CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  • Jean-Baptiste Thiebot
    • 1
    Email author
  • Bungo Nishizawa
    • 2
  • Fumio Sato
    • 3
  • Naoki Tomita
    • 3
  • Yutaka Watanuki
    • 2
  1. 1.National Institute of Polar ResearchTokyoJapan
  2. 2.Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
  3. 3.Yamashina Institute for OrnithologyAbikoJapan

Personalised recommendations