Full annual cycle tracking of a small songbird, the Siberian Rubythroat Calliope calliope, along the East Asian flyway

Abstract

We used light-level-based geolocation to study the spatio-temporal behaviour of Siberian Rubythroats Calliope calliope breeding in the Amur region of the Russian Far East. Three retrieved devices revealed long-distance migrations, with southwestward movement from Amur through Northeast China in autumn, with the tracked individuals reaching their wintering grounds in southern China and Indochina without major detours and apparently on a route slightly further west than that of the return migration in spring. A single stopover occurred in two of the three birds in both spring and autumn in China. Migration was faster in spring compared to autumn. The birds spent most of their time in seasonal habitats on their temperate breeding sites, and in less seasonal habitats on their tropical wintering grounds. Departure from and arrival at their breeding site coincided with decreasing and increasing vegetation greenness, respectively. This is the first study presenting year-round tracking data for a songbird migrating from mainland Eurasia to Southeast Asia along the East Asian flyway.

Zusammenfassung

Aufenthaltsorte des Rubinkehlchens Calliope calliope entlang des Ostasiatischen Zugweges im Jahresverlauf Mit Hilfe von Geolokatoren haben wir das Raum-Zeit-Verhalten von am Amur im Fernen Osten Russlands brütenden Rubinkehlchen Calliope calliope untersucht. Wir stellen damit erstmalig Positions-Daten zum Herbst- und Frühjahrszug einer Singvogelart vor, welche vom eurasischen Festland entlang des Ostasiatischen Zugweges nach Südostasien zieht. Der Langstreckenzug von drei Individuen konnte erfolgreich verfolgt werden. Im Herbst zogen die Vögel in südwestlicher Richtung über Nordost-China ab. Die Winterquartiere lagen im südlichen China und in Indochina und wurden ohne Umweg erreicht. Die Daten der ausgelesenen Geolokatoren deuten darauf hin, dass der Heimzug im Frühjahr weiter östlich als der Wegzug stattfindet. Die Zuggeschwindigkeit der beloggerten Individuen war im Frühjahr höher als im Herbst. Je ein Zwischenrastplatz während des Herbst- und Frühjahrszug konnte für zwei der drei Individuen in China lokalisiert werden. Die meiste Zeit verbrachten die verfolgten Rubinkehlchen im temperaten Brutgebiet, und in Gebieten mit schwacher Saisonalität im tropischen Winterquartier. Der Abzug vom und die Ankunft im Brutgebiet fallen in die Zeit der stärksten Ab- beziehungsweise Zunahme der NDVI-Werte (Normalized Difference Vegetation Index) - die Vögel passten also die Vegetationsperiode in Fernost Russland ab.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. BirdLife International (2017) Species factsheet: Calliope calliope. http://www.birdlife.org. Accessed 25 Nov 2017

  2. Bridge ES, Ross JD, Contina AJ, Kelly JF (2016) Do molt-migrant songbirds optimize migration routes based on primary productivity? Behav Ecol 27:784–792. https://doi.org/10.1093/beheco/arv199

    Article  Google Scholar 

  3. Delany S et al (2017) Passerine migration across the Himalayas. Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers. Cambridge University Press, Cambridge, pp 58–81

    Google Scholar 

  4. Edenius L, Choi C-Y, Heim W, Jaakkonen T, De Jong A, Ozaki K, Roberge J-M (2017) The next common and widespread bunting to go? Global population decline in the Rustic Bunting Emberiza rustica. Bird Conserv Int 27:35–44. https://doi.org/10.1017/S0959270916000046

    Article  Google Scholar 

  5. Ekstrom PA (2004) An advance in geolocation by light. Memoirs of the National Institute of Polar Research, Japan, pp 210–226

    Google Scholar 

  6. Emmenegger T, Hahn S, Bauer S (2014) Individual migration timing of Common Nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol 14:9. https://doi.org/10.1186/1472-6785-14-9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Emmenegger T et al (2016) Shifts in vegetation phenology along flyways entail varying risks of mistiming in a migratory songbird. Ecosphere. https://doi.org/10.1002/ecs2.1385

    Article  Google Scholar 

  8. Finch T et al (2017) Low migratory connectivity is common in long-distance migrant birds. J Anim Ecol 86:662–673

    Article  PubMed  Google Scholar 

  9. Fudickar AM, Wikelski M, Partecke J (2012) Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats. Methods Ecol Evol 3:47–52. https://doi.org/10.1111/j.2041-210X.2011.00136.x

    Article  Google Scholar 

  10. Glutz von Blotzheim UN (1988) Handbuch der Vögel Mitteleuropas: Band 11/1. Passeriformes (2. Teil): Turdidae. Schmätzer und Verwandte: Erithacinae. Aula, Wiesbaden

    Google Scholar 

  11. Greenberg JA, Mattiuzzi M (2015) gdalUtils: wrappers for the Geospatial Data Abstraction Library (GDAL). R package version 2.0.1.7 edn

  12. Han LX, Huang SL, Yuan YC, Qiu YL (2007) Fall migration dynamics of birds on Fenghuang Mountain, Yunnan Province, China. Zool Res 28:35–40

    CAS  Google Scholar 

  13. Heim W, Smirenski SM (2013) The Amur bird project at Muraviovka Park in Far East Russia. BirdingASIA 19:31–33

    Google Scholar 

  14. Higuchi H et al (2005) Migration of Honey-buzzards Pernis apivorus based on satellite tracking. Ornithol Sci 4:109–115. https://doi.org/10.2326/osj.4.109

    Article  Google Scholar 

  15. Hijmans RJ et al (2016) raster: geographic data analysis and modeling. R package version 2.5-8 edn

  16. Hill RD, Braun MJ (2001) Geolocation by light level. Electronic tagging and tracking in marine fisheries. Springer, the Netherlands, pp 315–330

    Google Scholar 

  17. Kamp J et al (2015) Global population collapse in a superabundant migratory bird and illegal trapping in China. Conserv Biol 29:1684–1694. https://doi.org/10.1111/cobi.12537

    Article  PubMed  Google Scholar 

  18. Kirby JS et al (2008) Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conserv Int 18:49–73. https://doi.org/10.1017/s0959270908000439

    Article  Google Scholar 

  19. Koike S, Hijikata N, Higuchi H (2016) Migration and wintering of Chestnut-cheeked Starlings Agropsar philippensis. Ornithol Sci 15:63–74

    Article  Google Scholar 

  20. Lang DT (2017) XML: tools for parsing and generating XML within R and S-Plus. R package version 3.89-1.9 edn

  21. Lislevand T et al (2015) Red-spotted Bluethroats Luscinia s. svecica migrate along the Indo-European flyway: a geolocator study. Bird Study 62:508–515

    Article  Google Scholar 

  22. Lisovski S, Hahn S (2012) GeoLight- processing and analysing light-based geolocator data in R. Methods Ecol Evol 3:1055–1059. https://doi.org/10.1111/j.2041-210X.2012.00248.x

    Article  Google Scholar 

  23. Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612. https://doi.org/10.1111/j.2041-210X.2012.00185.x

    Article  Google Scholar 

  24. Lisovski S et al (2018) Inherent limits of light-level geolocation may lead to over-interpretation. Curr Biol 28:R99–R100

    Article  PubMed  CAS  Google Scholar 

  25. Maslovsky KS, Valchuk OP, Spiridonova LN (2014) The complex study of autumn migration of the Siberian Rubythroat (Luscinia calliope) in southern Primorye: data analyses on banding and sequencing of cytochrome b gene of mitochondrial DNA. In: Areas, migration and other displacements of wild animals. Vladivostok, pp 181–189

  26. Mattiuzzi M et al. (2017) MODIS: acquisition and Processing. R package version 1.1.0 edn

  27. McClure HE (1974) Migration and survival of the birds of Asia. SEATO, Bangkok

    Google Scholar 

  28. McKinnon EA, Fraser KC, Stutchbury BJM (2013) New discoveries in landbird migration using geolocators, and a flight plan for the future. Auk 130:211–222. https://doi.org/10.1525/auk.2013.130.2.12226

    Article  Google Scholar 

  29. Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845. https://doi.org/10.1086/670335

    Article  PubMed  Google Scholar 

  30. Nychka D, Furrer R, Paige J, Sain S (2017) fields: tools for spatial data. R package version 7

  31. Piersma T et al (2016) Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J Appl Ecol 53:479–490. https://doi.org/10.1111/1365-2664.12582

    Article  Google Scholar 

  32. R Core Team (2017) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna

    Google Scholar 

  33. Rappole JH, Tipton AR (1991) New harness design for attachment of radio transmitters to small passerines. J Field Ornithol 62:335–337

    Google Scholar 

  34. Runge CA et al (2015) Protected areas and global conservation of migratory birds. Science 350:1255–1258

    Article  PubMed  CAS  Google Scholar 

  35. Spiridonova LN, Val’chuk OP, Belov PS, Maslovsky KS (2013) Intraspecific genetic differentiation of the Siberian Rubythroat (Luscinia calliope): data of sequencing the mtDNA cytochrome b gene. Russ J Genet 49:638–644. https://doi.org/10.1134/s1022795413060136

    Article  CAS  Google Scholar 

  36. Szabo JK, Battley PF, Buchanan KL, Rogers DI (2016) What does the future hold for shorebirds in the East Asian–Australasian Flyway? Emu 116:95. https://doi.org/10.1071/MUv116n2_ED

    Article  Google Scholar 

  37. Takekawa JY et al (2010) Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis 54:466–476. https://doi.org/10.1637/8914-043009-Reg.1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tamada K, Hayama S, Umeki M, Takada M, Tomizawa M (2017) Drastic declines in Brown Shrike and Yellow-breasted Bunting at the Lake Utonai Bird Sanctuary, Hokkaido. Ornithol Sci 16:51–57

    Article  Google Scholar 

  39. Thorup K et al (2017) Resource tracking within and across continents in long-distance bird migrants. Sci Adv 3:e1601360. https://doi.org/10.1126/sciadv.1601360

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tian H et al (2015) Avian influenza H5N1 viral and bird migration networks in Asia. Proc Natl Acad Sci USA 112:E2980. https://doi.org/10.1073/pnas.1505041112

    Article  PubMed  CAS  Google Scholar 

  41. Tugarinov A (1931) Die Wanderungen der nordasiatischen Vögel. Vogelzug 2:55–66

    Google Scholar 

  42. Weng G-J, Lin H-S, Sun Y-H, Walther BA (2014) Molecular sexing and stable isotope analyses reveal incomplete sexual dimorphism and potential breeding range of Siberian Rubtyhroats Luscinia calliope captured in Taiwan. Forktail 30:96–103

    Google Scholar 

  43. Wotherspoon S, Sumner M, Lisovksi S (2013) BAStag: basic data processing for light based geolocation archival tags. R package Version 0.1-3

  44. Yamaura Y, Schmaljohann H, Lisovski S, Senzaki M, Kawamura K, Fujimaki Y, Nakamura F (2016) Tracking the Stejneger´s Stonechat Saxicola stejnegeri along the East Asian-Australasian Flyway from Japan via China to Southeast Asia. J Avian Biol. https://doi.org/10.1111/jav.01054

    Article  Google Scholar 

  45. Yong DL, Liu Y, Low BW, Española CP, Choi C-Y, Kawakami K (2015) Migratory songbirds in the East Asian-Australasian Flyway: a review from a conservation perspective. Bird Conserv Int 25:1–37

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wieland Heim.

Additional information

Communicated by N. Chernetsov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heim, W., Pedersen, L., Heim, R. et al. Full annual cycle tracking of a small songbird, the Siberian Rubythroat Calliope calliope, along the East Asian flyway. J Ornithol 159, 893–899 (2018). https://doi.org/10.1007/s10336-018-1562-z

Download citation

Keywords

  • Migration
  • Geolocation
  • Passerine
  • Land bird
  • Normalised difference vegetation index
  • Spatio-temporal behaviour