Sperm variation in Great Tit males (Parus major) is linked to a haematological health-related trait, but not ornamentation

  • Jana Svobodová
  • Petra Bauerová
  • Jiří Eliáš
  • Hana Velová
  • Michal Vinkler
  • Tomáš Albrecht
Original Article

Abstract

The phenotype-linked fertility hypothesis (PLFH) proposes that both sexual ornaments and sperm traits are phenotypically plastic and co-affected by environmental factors through individual condition, resulting in a positive correlation between ornament expression and functional fertility. Ornaments may then serve females in the identification of the most fertile males. Despite intense research on the relationship between sexual characters and male ejaculate quality, published results are not consistent with the PLFH. The aim of our study was to test if sperm morphology is associated with sexual ornamentation and several health/condition-dependent traits in Great Tit males (Parus major). We evaluated the association between sperm morphology and two types of ornaments, carotenoid- and melanin-based ventral feather coloration, to evaluate predictions of the PLFH. As surrogates for condition and health/stress status, we used standardized male weight and the peripheral blood heterophil to lymphocyte ratio (H/L). Also, we used the immature erythrocyte frequency as a trait linked to the rate of haematopoiesis, and presumably metabolism and pace of life. Our results support an association of sperm traits with health-related traits: the within-male variability in total sperm length was negatively related to the H/L ratio. This either suggests that birds maintaining low sperm variability may afford to invest more into heterophil production or, in contrast to the PLFH, there could be a trade-off between individual investment in reproduction (ejaculate quality) and the avoidance of long-term physiological stress. Contrary to the predictions of the PLFH we were unable to identify any parameter of sperm morphology associated with either body condition or the expression of male sexual traits. Thus, our study contributes to evidence rejecting the hypothesis of ornamental involvement in fertility selection, while giving weak support to the sperm competition theory.

Keywords

Carotenoid coloration Melanin coloration Condition-dependent sexual signalling Haematology Sperm flagellum Sperm length 

Zusammenfassung

Bei Kohlmeisenmännchen ( Parus major ) ist die Spermienvariabilität mit einem gesundheitsrelevanten hämatologischen Merkmal gekoppelt, nicht jedoch mit der Färbung.

Die Hypothese der phänotypgekoppelten Fertilität (Phenotype-linked Fertility Hypothesis; PLFH) besagt, dass sowohl die geschlechtstypische Färbung als auch die Spermienmerkmale phänotypisch plastisch sind und über die individuelle Körperkondition von Umweltfaktoren mitbeeinflusst werden, was zu einer positiven Korrelation zwischen äußerlicher Merkmalsausprägung und funktioneller Fertilität führt. Eine Schmuckfärbung kann dann den Weibchen dabei helfen, die fruchtbarsten Männchen zu erkennen. Trotz intensiver Erforschung der Zusammenhänge zwischen Geschlechtsmerkmalen und der Qualität der männlichen Ejakulate lassen sich die publizierten Ergebnisse nicht mit der PLFH in Einklang bringen. Ziel unserer Studie war es zu testen, ob die Spermienmorphologie bei Kohlmeisenmännchen (Parus major) mit der geschlechtstypischen Färbung und verschiedenen vom Gesundheitszustand beziehungsweise der Kondition abhängigen Merkmalen in Verbindung steht. Um die Vorhersagen der PLFH zu überprüfen, betrachteten wir den Zusammenhang zwischen der Spermienmorphologie und zwei Typen der Schmuckfärbung, nämlich der carotinoid- beziehungsweise melaninbasierten Färbung des ventralen Gefieders. Stellvertretend für die Kondition und den Gesundheits-/Stress-Status verwendeten wir das standardisierte Körpergewicht der Männchen und deren H/L-Verhältnis (Heterophile Granulozyten/Lymphozyten) im peripheren Blut. Außerdem nutzten wir die Häufigkeit unreifer Erythrozyten als Merkmal für das Ausmaß der Blutneubildung sowie vermutlich für die Stoffwechselrate und das Lebenstempo. Unsere Ergebnisse sprechen für einen Zusammenhang zwischen Spermieneigenschaften und gesundheitsbezogenen Merkmalen: Die Variabilität der Spermien-Gesamtlänge bei einem Männchen stand jeweils in einer negativen Beziehung zum H/L-Verhältnis. Entweder bedeutet dies, dass es sich Vögel mit einer geringen Spermienvariabilität leisten können, mehr in die Produktion heterophiler Granulozyten zu investieren, oder es könnte sich—im Widerspruch zur PLFH—um einen Kompromiss zwischen der individuellen Investition in die Fortpflanzung (Qualität des Ejakulats) und der Vermeidung langfristigen physiologischen Stresses handeln. Im Gegensatz zu den Voraussagen der PLFH konnten wir keinen Parameter der Spermienmorphologie ausmachen, welcher entweder mit der Körperkondition oder der Ausprägung männlicher Geschlechtsmerkmale im Zusammenhang stünde. Somit liefert unsere Studie einen weiteren Beleg für eine Widerlegung der Hypothese von der Beteiligung der Schmuckfärbung an der Fertilitätsselektion und unterstützt dagegen leicht die Theorie der Spermienkonkurrenz (Sperm Competition Theory; SCT).

Notes

Acknowledgments

We thank Martin Těšický, Jitka Vinklerová for their help with fieldwork, Veronika Górecká for sperm analysis and an anonymous referee for their helpful comments. This study was supported by the Czech Science Foundation (project no. P506/15-11782S), and the Internal Grant Agency of the Czech University of Life Sciences (project nos. IGA 20144268 and IGA 20154241).

Supplementary material

10336_2018_1559_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. Aire TA (2007) Spermatogenesis and testicular cycles. In: Jamieson BGM (ed) Reproductive biology and phylogeny of birds, vol 6A. Science Publishers. Enfield, NH, pp 279–347Google Scholar
  2. Albrecht T, Kleven O, Kreisinger J, Laskemoen T, Omotoriogun TC, Ottosson U, Reif J, Sedláček O, Hořák D, Robertson RJ, Lifjeld JT (2013) Sperm competition in tropical versus temperate zone birds. Proc R Soc B Biol Sci 280:20122434CrossRefGoogle Scholar
  3. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  4. Bennison C, Hemmings N, Slate J, Birkhead T (2015) Long sperm fertilize more eggs in a bird. Proc R Soc B 282:20141897CrossRefPubMedPubMedCentralGoogle Scholar
  5. Birkhead TR, Fletcher F (1995) Male phenotype and ejaculate quality in the Zebra Finch Taeniopygia guttata. Proc R Soc Lond 262:329–334CrossRefGoogle Scholar
  6. Blount JD, Møller AP, Houston DC (2001) Antioxidants, showy males and sperm quality. Ecol Lett 4:393–396CrossRefGoogle Scholar
  7. Calhim S, Lampe HM, Slagsvold T, Birkhead TR (2009) Selection on sperm morphology under relaxed sperm competition in a wild passerine bird. Biol Lett 5:58–61CrossRefPubMedGoogle Scholar
  8. Cramer ERA, Laskemoen T, Kleven O, Lifjeld JT (2012) Sperm length variation in House Wrens Troglodytes aedon. J Ornithol 154:129–138CrossRefGoogle Scholar
  9. Crawley MJ (2002) Statistical computing. Wiley, ChichesterGoogle Scholar
  10. Davis AK (2005) Effect of handling time and repeated sampling on avian white blood cell counts. J Field Ornithol 76:334–338CrossRefGoogle Scholar
  11. Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772CrossRefGoogle Scholar
  12. Dunn PO, Garvin JC, Whittingham LA, Freeman-Gallant CR, Hasselquist D (2010) Carotenoid and melanin-based ornaments signal similar aspects of male quality in two populations of the Common Yellowthroat. Funct Ecol 24:149–158CrossRefGoogle Scholar
  13. Gangoso L, Grande JM, Ducrest A-L, Figuerola J, Bortolotti GR, Andre´s JA, Roulin A (2011) MC1R-dependent, melanin-based colour polymorphism is associated with cell-mediated response in the Eleonora’s Falcon. J Evol Biol 24:2055–2063CrossRefPubMedGoogle Scholar
  14. Griffith SC, Owens IP, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212CrossRefPubMedGoogle Scholar
  15. Griffith SC, Parker TH, Olson VA (2006) Melanin-versus carotenoid-based sexual signals: is the difference really so black and red? Anim Behav 71:749–763CrossRefGoogle Scholar
  16. Guindre-Parker S, Love OP (2014) Revisiting the condition-dependence of melanin-based plumage. J Avian Biol 45:29–33CrossRefGoogle Scholar
  17. Helfenstein F, Losdat S, Møller AP, Blount JD, Richner H (2010) Sperm of colourful males are better protected against oxidative stress. Ecol Lett 13:213–222CrossRefPubMedGoogle Scholar
  18. Hill GE (2011) Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol Lett 14:625–634CrossRefPubMedGoogle Scholar
  19. Immler S, Calhim S, Birkhead TR (2008) Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 62:1538–1543CrossRefPubMedGoogle Scholar
  20. Isaksson C, Ornborg J, Pager M, Andersson S (2008) Sex and age differences in reflectance and biochemistry of carotenoid-based colour variation in the Great Tit Parus major. Biol J Linn Soc 95:758–765CrossRefGoogle Scholar
  21. Jacquin L, Lenouvel P, Haussy C, Ducatez S, Gasparini J (2011) Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: the Feral Pigeon Columba livia. J Avian Biol 42:11–15CrossRefGoogle Scholar
  22. Kleven O, Laskemoen T, Fossøy F, Robertson RJ, Lifjeld JT (2008) Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62:494–499CrossRefPubMedGoogle Scholar
  23. Kleven O, Fossøy F, Laskemoen T, Robertson RJ, Rudolfsen G, Lifjeld JT (2009) Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution 63:2466–2473CrossRefPubMedGoogle Scholar
  24. Laskemoen T, Laskemoen T, Kleven O, Fossøy F, Robertson R, Rudolfsen G, Lifjeld J (2010) Sperm quantity and quality effects on fertilization success in a highly promiscuous passerine, the Tree Swallow Tachycineta bicolor. Behav Ecol Sociobiol 64:1473–1483CrossRefGoogle Scholar
  25. Lessels CN, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121CrossRefGoogle Scholar
  26. Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ (2010) Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS One 5:1–8CrossRefGoogle Scholar
  27. Lifjeld JT, Laskemoen T, Kleven O, Pedersen AT, Lampe HM, Rudolfsen G, Schmoll T, Slagsvold T (2012) No evidence for pre-copulatory sexual selection on sperm length in a passerine bird. PLoS One 7:1–5CrossRefGoogle Scholar
  28. Losdat S, Richner H, Blount JD, Helfenstein F (2011) Immune activation reduces sperm quality in the Great Tit. PLoS One 6:1–10CrossRefGoogle Scholar
  29. Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311CrossRefGoogle Scholar
  30. Lüpold S, Calhim S, Immler S, Birkhead TR (2009) Sperm morphology and sperm velocity in passerine birds S. Proc Biol Sci 276:1175–1181CrossRefPubMedGoogle Scholar
  31. Malo AF, Garde JJ, Soler AJ, García AJ, Gomendio M, Roldan ER (2005) Male fertility in natural populations of Red Deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol Reprod 72:822–829CrossRefPubMedGoogle Scholar
  32. Mautz BS, Møller AP, Jennions MD (2013) Do male secondary sexual characters signal ejaculate quality? A meta-analysis. Biol Rev Camb Philos Soc 88:669–682CrossRefPubMedGoogle Scholar
  33. Opatová P, Ihle M, Albrechtová J, Tomášek O, Kempenaers B, Forstmeier W, Albrecht T (2016) Inbreeding depression of sperm traits in the Zebra Finch Taeniopygia guttata. Ecol Evol 6:295–304CrossRefPubMedGoogle Scholar
  34. Ots I, Hõrak P (1996) Great Tits Parus major trade health for reproduction. Proc R Soc Lond 263:1443–1447CrossRefGoogle Scholar
  35. Parker GA (1998) Sperm competition and the evolution of ejaculates: towards theory base. Sperm competiion and sexual selection. Academic Press, San DiegoGoogle Scholar
  36. Pizzari T, Birkhead TR (2002) The sexually-selected sperm hypothesis: sexbiased inheritance and sexual antagonism. Biol Rev Camb Philos Soc 77:183–209CrossRefPubMedGoogle Scholar
  37. Pizzari T, Jensen P, Cornwallis CK (2004) A novel test of the phenotype-linked fertility hypothesis reveals independent components of fertility. Proc R Soc Lond 271:51–58CrossRefGoogle Scholar
  38. Pizzari T, Worley K, Burke T, Froman DP (2008) Sperm competition dynamics: ejaculate fertilising efficiency changes differentially with time. BMC Evol Biol 8:332CrossRefPubMedPubMedCentralGoogle Scholar
  39. Quesada J, Senar JC (2006) Comparing plumage colour measurements obtained directly from live birds and from collected feathers: the case of the Great Tit Parus major. J Avian Biol 37:609–616CrossRefGoogle Scholar
  40. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  41. Rowe M, McGraw KJ (2008) Carotenoids in the seminal fluid of wild birds: interspecific variation in Fairy-wrens. Condor 110:694–700CrossRefGoogle Scholar
  42. Rowe M, Tourville EA, McGraw KJ (2012) Carotenoids in bird testes: links to body carotenoid supplies, plumage coloration, body mass and testes mass in House Finches (Carpodacus mexicanus). Comp Biochem Physiol B Biochem Mol Biol 163:285–291CrossRefPubMedGoogle Scholar
  43. Sheldon BC (1994) Male phenotype, fertility, and the pursuit of extra-pair copulations by female birds. Proc R Soc Lond 257:25–30CrossRefGoogle Scholar
  44. Sokal RR, Rohlf FJ (1981) Biomerty. Freeman, New YorkGoogle Scholar
  45. Svensson PA, Wong BBM (2011) Carotenoid-based signals in behavioural ecology: a review. Behaviour 148:131–189CrossRefGoogle Scholar
  46. Tomášek O, Albrechtová J, Němcová M, Opatová P, Albrecht T (2017) Trade-off between carotenoid-based sexual ornamentation and sperm resistance to oxidative challenge. Proc Soc Lond.  https://doi.org/10.1098/rspb.2016.2444 Google Scholar
  47. Vergara P, Martinez-Padilla J, Mougeot F, Leckie F, Redpath SM (2012a) The condition dependence of a secondary sexual trait is stronger under high parasite infection level. Behav Ecol 23:502–511CrossRefGoogle Scholar
  48. Vergara P, Martinez-Padilla J, Mougeot F, Leckie F, Redpath SM (2012b) Environmental conditions influence Red Grouse ornamentation at a population level. Behav Ecol 23:502–511CrossRefGoogle Scholar
  49. Vinkler M, Schnitzer J, Munclinger P, Votýpka J, Albrecht T (2010) Haematological health assessment in a passerine with extremely high proportion of basophils in peripheral blood. J Ornithol 151:841–849CrossRefGoogle Scholar
  50. von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond 266:1–12CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Department of Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague 6Czech Republic
  2. 2.Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
  3. 3.Institute of Vertebrate Biology, v.v.iCzech Academy of SciencesBrnoCzech Republic

Personalised recommendations