Skip to main content
Log in

Plumage pigmentation patterns of diurnal raptors in relation to colour ornamentation and ecology

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

While sexual signalling often compromises camouflage, some traits, including avian barred plumage, have been suggested to function simultaneously in camouflage and sexual signalling. Compared to coloration without pigmentation patterns, visual patterns are often beneficial for camouflage, and the precise arrangement of parallel bars in the pigmentation patterns of barred plumage may, at close range, provide cues on plumage quality useful for signalling. We used diurnal raptors, which benefit from camouflage for hunting in daylight, to test whether the evolution of some pigmentation patterns is associated with traits indicative of sexual selection. Phylogenetic regressions showed a negative association between the extent of barred and mottled plumage. There was also a negative association between the extent of ornamental colours and mottled plumage, thought to function mostly for camouflage, indicating a compromise between ornamentation and camouflage. The trade-off between ornamental colours and barred plumage was weaker than the one with mottled plumage, consistent with the hypothesis that barred plumage at times evolves for camouflage, similarly to mottled plumage, but at times can be co-opted for signalling together with ornamental colours. However, both barred plumage and ornamental coloration were only weakly related to socioecological traits suggestive of increased sexual selection. Therefore, despite differences in evolution between mottled and barred plumage in raptors, suggesting that the latter has more diverse functions than camouflage alone, behavioural research is needed to confirm the possible dual function of barred plumage as an ornamental trait.

Zusammenfassung

Muster der Gefiederpigmentierung bei tagaktiven Greifvögeln in Relation zu farblicher Ornamentierung und Ökologie

Während sexuelle Signale oft die Tarnung beeinträchtigen, wird vermutet, dass manche Merkmale, darunter auch die Sperberung beim Vogelgefieder, gleichzeitig der Tarnung als auch als Signal ans andere Geschlecht dienen können. Im Vergleich zur Färbung ohne Pigmentierungsmuster sind optische Muster oft hilfreich für die Tarnung und die genaue Anordnung der Parallelstreifen im Pigmentierungsmuster gesperberten Gefieders kann aus der Nähe Hinweise auf die Gefiederqualität geben, welche nützliche Signale darstellen. Um zu überprüfen, ob die Evolution mancher Pigmentierungsmuster mit Merkmalen zusammenhängt, welche auf sexuelle Selektion hindeuten, wählten wir tagaktive Greifvögel, für die eine Tarnfärbung auf der Jagd bei Tageslicht vorteilhaft ist. Phylogenetische Regressionsanalysen zeigten einen negativen Zusammenhang zwischen dem Ausmaß gesperberten beziehungsweise gefleckten Gefieders. Außerdem bestand ein negativer Zusammenhang zwischen dem Ausmaß an Farbornamenten und der Gefiederfleckung, bei der man hauptsächlich einen Tarneffekt annimmt, was auf einen Kompromiss zwischen Schmuck- und Tarnwirkung hindeutet. Der Kompromiss zwischen Farbornamenten und Gefiedersperberung war weniger deutlich als der bei Gefiederfleckung, was sich mit der Hypothese deckt, dass gesperbertes Gefieder manchmal – ähnlich wie geflecktes Gefieder - zu Tarnzwecken entwickelt wird, manchmal aber auch in Kombination mit Farbornamenten zur Signalübermittlung hinzugezogen werden kann. Allerdings standen sowohl Gefiedersperberung als auch Farbornamente nur in einem schwachen Zusammenhang mit sozioökologischen Merkmalen, die auf eine verstärkte sexuelle Selektion hinweisen. Trotz evolutiver Unterschiede zwischen geflecktem und gesperbertem Gefieder bei Greifvögeln, welche nahelegen, dass letzteres vielseitigere Funktionen hat, als nur der Tarnung zu dienen, sind weitere Verhaltensstudien notwendig, um eine eventuelle Doppelfunktion der Gefiedersperberung als Schmuckmerkmal zu bestätigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht T, Schnitzer J, Kreisinger J, Exnerová A, Bryja J, Munclinger P (2007) Extrapair paternity and the opportunity for sexual selection in long-distant migratory passerines. Behav Ecol 18:477–486

    Article  Google Scholar 

  • Andersson MB (1994) Sexual selection. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Armenta JK, Dunn PO, Whittingham LA (2008) Quantifying avian sexual dichromatism: a comparison of methods. J Exp Biol 211:2423–2430

    Article  PubMed  Google Scholar 

  • Badyaev AV (1997a) Altitudinal variation in sexual dimorphism: a new pattern and alternative hypotheses. Behav Ecol 8:675–690

    Article  Google Scholar 

  • Badyaev AV (1997b) Covariation between life history and sexually selected traits: an example with cardueline finches. Oikos 80:128–138

    Article  Google Scholar 

  • Badyaev AV, Ghalambor CK (1998) Does a trade-off exist between sexual ornamentation and ecological plasticity? Sexual dichromatism and occupied elevational range in finches. Oikos 82:319–324

    Article  Google Scholar 

  • Badyaev AV, Hill GE (2002) Paternal care as a conditional strategy: distinct reproductive tactics associated with elaboration of plumage ornamentation in the House Finch. Behav Ecol 13:591–597

    Article  Google Scholar 

  • Badyaev AV, Hill GE (2003) Avian sexual dichromatism in relation to phylogeny and ecology. Annu Rev Ecol Evol Syst 34:27–49

    Article  Google Scholar 

  • Bailey SF (1978) Latitudinal gradients in colors and patterns of passerine birds. Condor 80:372–381

    Article  Google Scholar 

  • Baker RR, Parker G (1979) The evolution of bird coloration. Philos Trans R Soc B 287:63–130

    Article  Google Scholar 

  • Bergeron ZT, Fuller RC (2018) Using human vision to detect variation in avian coloration: how bad is it? Am Nat 191:269–276

    Article  PubMed  Google Scholar 

  • Bonser RH (1995) Melanin and the abrasion resistance of feathers. Condor 97:590–591

    Article  Google Scholar 

  • Bortolotti GR, Blas J, Negro JJ, Tella JL (2006) A complex plumage pattern as an honest social signal. Anim Behav 72:423–430

    Article  Google Scholar 

  • Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 78:575–595

    Article  PubMed  Google Scholar 

  • Cardoso GC, Hu Y, Mota PG (2012) Birdsong, sexual selection, and the flawed taxonomy of canaries, goldfinches and allies. Anim Behav 84:111–119

    Article  Google Scholar 

  • Cuervo J, Møller A (1999) Ecology and evolution of extravagant feather ornaments. J Evol Biol 12:986–998

    Article  Google Scholar 

  • Dale J, Dey CJ, Delhey K, Kempenaers B, Valcu M (2015) The effects of life history and sexual selection on male and female plumage colouration. Nature 527:367–370

    Article  PubMed  CAS  Google Scholar 

  • Drury JP, Burroughs N (2016) Nest shape explains variation in sexual dichromatism in New World blackbirds. J Avian Biol 47:312–320

    Article  Google Scholar 

  • Dunning JB (2008) CRC handbook of avian body masses. Taylor & Francis, Boca Raton

    Google Scholar 

  • Ferguson-Lees J, Christie DA (2001) Raptors of the world. Houghton Mifflin Harcourt, Boston

    Google Scholar 

  • Fitzpatrick S (1994) Colourful migratory birds: evidence for a mechanism other than parasite resistance for the maintenance of ‘good genes’ sexual selection. Proc R Soc B 257:155–160

    Article  Google Scholar 

  • Fitzpatrick S (1998) Intraspecific variation in wing length and male plumage coloration with migratory behaviour in continental and island populations. J Avian Biol 29:248–256

    Article  Google Scholar 

  • Freckleton R (2011) Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav Ecol Sociobiol 65:91–101

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Garamszegi LZ, Mundry R (2014) Multimodel-inference in comparative analyses. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, Berlin, pp 305–331

    Chapter  Google Scholar 

  • Germain RR, Reudink MW, Marra PP, Ratcliffe LM (2010) Carotenoid-based male plumage predicts parental investment in the American Redstart. Wilson J Ornithol 122:318–325

    Article  Google Scholar 

  • Gladbach A, Gladbach DJ, Kempenaers B, Quillfeldt P (2010) Female-specific colouration, carotenoids and reproductive investment in a dichromatic species, the Upland Goose Chloephaga picta leucoptera. Behav Ecol Sociobiol 64:1779–1789

    Article  PubMed  PubMed Central  Google Scholar 

  • Gluckman T-L, Cardoso GC (2009) A method to quantify the regularity of barred plumage patterns. Behav Ecol Sociobiol 63:1837–1844

    Article  Google Scholar 

  • Gluckman TL, Cardoso GC (2010) The dual function of barred plumage in birds: camouflage and communication. J Evol Biol 23:2501–2506

    Article  PubMed  CAS  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Kin-Lan H, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Hammers M, von Engelhardt N, Langmore NE, Komdeur J, Griffith SC, Magrath MJ (2009) Mate-guarding intensity increases with breeding synchrony in the colonial Fairy Martin, Petrochelidon ariel. Anim Behav 78:661–669

    Article  Google Scholar 

  • Hasson O (1991) Sexual displays as amplifiers: practical examples with an emphasis on feather decorations. Behav Ecol 2:189–197

    Article  Google Scholar 

  • Hastad O, Odeen A (2008) Different ranking of avian colors predicted by modeling of retinal function in humans and birds. Am Nat 171:831–838

    Article  PubMed  Google Scholar 

  • Hu Y, Cardoso GC (2009) Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas? Behav Ecol 20:1268–1273

    Article  Google Scholar 

  • Jetz W, Thomas G, Joy J, Hartmann K, Mooers A (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  PubMed  CAS  Google Scholar 

  • Lind O, Mitkus M, Olsson P, Kelber A (2013) Ultraviolet sensitivity and colour vision in raptor foraging. J Exp Biol 216:1819–1826

    Article  PubMed  Google Scholar 

  • Marques CI, Batalha HR, Cardoso GC (2016) Signalling with a cryptic trait: the regularity of barred plumage in common waxbills. R Soc Open Sci 3:160195

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall NJ (2000) Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos Trans R Soc B 355:1243–1248

    Article  CAS  Google Scholar 

  • Marshall KL, Gluckman TL (2015) The evolution of pattern camouflage strategies in waterfowl and game birds. Ecol Evol 5:1981–1991

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin TE, Badyaev AV (1996) Sexual dichromatism in birds: importance of nest predation and nest location for females versus males. Evolution 50:2454–2460

    Article  PubMed  Google Scholar 

  • McNaught MK, Owens IP (2002) Interspecific variation in plumage colour among birds: species recognition or light environment? J Evol Biol 15:505–514

    Article  Google Scholar 

  • Mitchell DP, Dunn PO, Whittingham LA, Freeman-Gallant CR (2007) Attractive males provide less parental care in two populations of the Common Yellowthroat. Anim Behav 73:165–170

    Article  Google Scholar 

  • Mundry R (2014) Statistical issues and assumptions of phylogenetic generalized least squares. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, Berlin, pp 131–153

    Chapter  Google Scholar 

  • O’brien R (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • Orme D (2013) The caper package: comparative analysis of phylogenetics and evolution in R. http://cranr-project.org/web/packages/caper/vignettes/caperpdf5

  • Östman Ö, Stuart-Fox D (2011) Sexual selection is positively associated with ecological generalism among agamid lizards. J Evol Biol 24:733–740

    Article  PubMed  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rodriguez L, Jovani R, Stevens M (2017) Shape matters: animal colour patterns as signals of individual quality. Proc R Soc B 284:20162446

    Article  PubMed  Google Scholar 

  • Price JJ (1996) An association of habitat with color dimorphism in finches. Auk 113:256–257

    Article  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Riegner MF (2008) Parallel evolution of plumage pattern and coloration in birds: implications for defining avian morphospace. Condor 110:599–614

    Article  Google Scholar 

  • Rubolini D, Liker A, Garamszegi LZ, Møller AP, Saino N (2015) Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: a primer. Curr Zool 61:959–965

    Article  Google Scholar 

  • Ruxton GD, Speed MP, Kelly DJ (2004) What, if anything, is the adaptive function of countershading? Anim Behav 68:445–451

    Article  Google Scholar 

  • Shultz AJ, Burns KJ (2013) Plumage evolution in relation to light environment in a novel clade of Neotropical tanagers. Mol Phylogenet Evol 66:112–125

    Article  PubMed  Google Scholar 

  • Singh P, Price TD (2015) Causes of the latitudinal gradient in birdsong complexity assessed from geographical variation within two Himalayan warbler species. Ibis 157:511–527

    Article  Google Scholar 

  • Somveille M, Marshall KL, Gluckman TL (2016) A global analysis of bird plumage patterns reveals no association between habitat and camouflage. PeerJ 4:e2658

    Article  PubMed  PubMed Central  Google Scholar 

  • Spottiswoode C, Møller AP (2004) Extrapair paternity, migration, and breeding synchrony in birds. Behav Ecol 15:41–57

    Article  Google Scholar 

  • Spottiswoode CN, Tøttrup AP, Coppack T (2006) Sexual selection predicts advancement of avian spring migration in response to climate change. Proc R Soc B 273:3023–3029

    Article  PubMed  Google Scholar 

  • Stevens M (2007) Predator perception and the interrelation between different forms of protective coloration. Proc Biol Sci B 274:1457–1464

    Article  Google Scholar 

  • Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. Philos Trans R Soc B 364:423–427

    Article  Google Scholar 

  • Swaddle JP, Cuthill IC (1994) Female Zebra Finches prefer males with symmetric chest plumage. Proc R Soc B 258:267–271

    Article  Google Scholar 

  • Tate GJ, Bishop JM, Amar A (2016) Differential foraging success across a light level spectrum explains the maintenance and spatial structure of colour morphs in a polymorphic bird. Ecol Lett 19:679–686

    Article  PubMed  Google Scholar 

  • Tobias J, Seddon N (2009) Sexual selection and ecological generalism are correlated in antbirds. J Evol Biol 22:623–636

    Article  PubMed  CAS  Google Scholar 

  • Troscianko T, Benton CP, Lovell PG, Tolhurst DJ, Pizlo Z (2009) Camouflage and visual perception. Philos Trans R Soc B 364:449–461

    Article  Google Scholar 

  • Vergara P, Fargallo JA (2011) Multiple coloured ornaments in male Common Kestrels: different mechanisms to convey quality. Naturwissenschaften 98:289–298

    Article  PubMed  CAS  Google Scholar 

  • Vergara P, Fargallo JA, Martinez-Padilla J (2015) Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female Common Kestrels Falco tinnunculus. J Evol Biol 28:146–154

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (1983) Sexual selection, social competition, and speciation. Q Rev Biol 58:155–183

    Article  Google Scholar 

Download references

Acknowledgements

We thank Frank Shufelt and Sage Kadow for permission to use the photographs in this article. This work was supported by grant PTDC/BIA-EVF/116758/2010 and fellowships SFRH/BPD/46873/2008 and SFRH/BPD/110165/2015 from the Fundação para a Ciência e a Tecnologia. This comparative study was based on the literature and did not use live animals, and thus did not require legal permits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo C. Cardoso.

Additional information

Communicated by O. Krüger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 237 kb)

Supplementary material 2 (XLS 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, A.C.R., Silva, R. & Cardoso, G.C. Plumage pigmentation patterns of diurnal raptors in relation to colour ornamentation and ecology. J Ornithol 159, 793–804 (2018). https://doi.org/10.1007/s10336-018-1550-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-018-1550-3

Keywords

Navigation