Advertisement

Journal of Ornithology

, Volume 159, Issue 3, pp 747–759 | Cite as

The contribution of broadscale and finescale habitat structure to the distribution and diversity of birds in an Alpine forest-shrub ecotone

  • Susanne Jähnig
  • Riccardo Alba
  • Cristina Vallino
  • Domenico Rosselli
  • Marco Pittarello
  • Antonio Rolando
  • Dan Chamberlain
Original Article

Abstract

In a mountain context, the forest-shrub ecotone is an area of high biodiversity. Relatively little is known about the habitat requirements of birds in this habitat, yet it is facing potential threats from changes in grazing practices and climate change. Moreover, it is not clear at which scale habitat associations should be assessed in Alpine birds. Further information on key habitat components affecting bird communities of the ecotone is needed in order to inform management strategies to counteract potential habitat loss, and to better inform predictions of how bird communities may be affected by future environmental change. Data on bird occurrence and broadscale (land cover) and finescale (vegetation structure and shrub species composition) habitat variables were collected in an Alpine forest-shrub ecotone in Val Troncea (northwestern Italian Alps) in order to address two objectives: to identify the key habitat variables associated with the occurrence of individual species and with the diversity of the bird community; and, to assess which scale of habitat measurement (broadscale, finescale or both combined) is needed to model bird occurrence. Broadscale variables, or combinations of broadscale and finescale variables, tended to have the best performing models. When combined models performed best, shrub species identity was included in many cases. Shrubs also played an important role in explaining variations in species diversity and richness. Vegetation structure was of relatively little importance, either for individual bird species or for species richness and diversity. These findings suggest that management should strive to maintain a mosaic of habitats whilst minimizing forest encroachment, which could be achieved through targeted grazing. Broadscale habitat data and data on shrub species composition should provide a sufficient basis for identifying relevant species-specific habitat parameters in a mountain environment in order to model future scenarios of effects of habitat change on the bird community of the alpine forest-shrub ecotone.

Keywords

Habitat management Grazing Mountains Vegetation structure Species distribution models Habitat mosaic 

Zusammenfassung

Die Rolle von groß- und kleinräumigen Habitateigenschaften für Verbreitung und Diversität von Vögeln des Waldgrenz-Ökotons der Alpen

Das Waldgrenz-Ökoton der Alpen ist ein Gebiet, welches durch eine hohe Biodiversität gekennzeichnet ist. Obwohl aktuelle Bedrohungen durch Klimawandel und Veränderungen in der Beweidungspraxis omnipräsent in diesem Areal sind, sind die Habitatansprüche, welche für die Vögel in diesem Bereich gelten, bislang kaum erforscht. In welchem Maßstab diese Habitatanforderungen für Alpenvögel erfasst werden sollten, ist ebenfalls nicht bekannt. Es ist daher erforderlich, jene Habitatelemente zu identifizieren, die eine Schlüsselrolle für die Vogelgemeinschaften im Waldgrenz-Ökoton der Alpen spielen. Mit Hilfe dieser Informationen wird es in Zukunft möglich sein, potentiellem Habitatverlust entgegenzuwirken und Vorhersagen zu treffen, wie Vogelgemeinschaften des Ökotons auf zukünftige Umweltveränderungen reagieren könnten. Durch die Aufnahme von Daten über das Vogelvorkommen sowie groß- (Landbedeckungsdaten) und kleinräumigen (Daten zur Vegetationsstruktur und zur Straucharten-Zusammensetzung) Habitatdaten im Waldgrenz-Ökoton des Naturparks Val Troncea (NW Italien) wurden zwei Zielstellungen verfolgt: Die Identifikation von Habitatelementen, welche für das Vorkommen einzelner Arten sowie für die Vogeldiversität und den Vogelartenreichtum von wesentlicher Bedeutung sind und die Beurteilung des Maßstabs zur Habitatdatenaufnahme (großräumig, kleinräumig oder eine Kombination aus beidem), welcher erforderlich ist, um das Vorkommen einer Art modellieren zu können. Großräumige Habitatvariablen oder eine Kombination von groß-und kleinräumigen Habitatvariablen führte zu den besten Modellen. Wenn die besten Modelle durch eine Kombination von Habitatvariablen erzielt wurden, war die Identität der Strauchart eine oftmals beinhaltete Variable. Generell spielten Sträucher eine wichtige Rolle, um Variationen in der Vogeldiversität und dem Vogelartenreichtum zu erklären. Von geringer Relevanz für individuelle Vogelarten sowie Vogelartendiversität und -reichtum waren kleinräumige Habitatvariablen zur Vegetationsstruktur. Diese Ergebnisse zeigen, dass zukünftige Naturschutzmaßnahmen darauf abzielen sollten, das Habitatmosaik im Waldgrenz-Ökoton zu erhalten und einer Ausbreitung des Waldes entgegenzuwirken. Dies könnte durch gezielte Beweidung erreicht werden. Großräumige Habitatdaten sowie Daten zur Strauchartenzusammensetzung stellten zudem eine solide Basis dar, um relevante artspezifische Habitatansprüche für alpine Vogelarten zu identifizieren und potentielle Auswirkungen zukünftiger Habitatveränderungen auf die Vogelgemeinschaft des alpinen Waldgrenz-Ökotons modellieren zu können.

Notes

Acknowledgements

We thank Luca Maurino and the other rangers and staff of Val Troncea Natural Park for their great help. We are also grateful to Massimiliano Probo and Michele Lonati for providing survey locations, and to Lorenza Lerda, Giulia Masoero and Sara Minolfi for help with fieldwork. D. C. was funded by a Ricerca Locale grant from the University of Turin.

Supplementary material

10336_2018_1549_MOESM1_ESM.pdf (430 kb)
Supplementary material 1 (PDF 429 kb)
10336_2018_1549_MOESM2_ESM.pdf (438 kb)
Supplementary material 2 (PDF 438 kb)

References

  1. Aeschimann D, Lauber K, Moser DM, Theurillat JD (2004) Flora alpina. Zanichelli, BolognaGoogle Scholar
  2. Arlettaz R, Patthey P, Baltic M, Leu T, Schaub M, Palme R, Jenni-Eiermann S (2007) Spreading free-riding snow sports represent a novel serious threat for wildlife. Proc R Soc B Biol Sci 267:1219–1224CrossRefGoogle Scholar
  3. Bailey DW, Gross JE, Laca EA, Rittenhouse LR, Coughenour MB, Swift DM, Sims PL (1996) Mechanisms that result in large herbivore grazing distribution patterns. J Range Manage 49:386–400CrossRefGoogle Scholar
  4. Bartoń K (2013) MuMIn: multi-model inference. R package version 1.9.0 edGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  6. Beniston M, Keller F, Koffi B, Goyette S (2003) Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor Appl Climatol 76:125–140CrossRefGoogle Scholar
  7. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:82–188Google Scholar
  8. Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, 2nd edn. Academic Press, LondonGoogle Scholar
  9. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps; 1769–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801CrossRefGoogle Scholar
  10. Brambilla M, Pedrini P, Rolando A, Chamberlain DE (2016) Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J Biogeogr 43:2299–2309CrossRefGoogle Scholar
  11. Brambilla M, Caprio E, Assandri G, Scridel D, Bassi E, Bionda R, Celada C, Falco R, Bogliani G, Pedrini P, Rolando A, Chamberlain D (in press) A spatially explicit definition of conservation priorities according to population resistance and resilience, species importance and level of threat in a changing climate. Divers DistribGoogle Scholar
  12. Braunisch V, Patthey P, Arlettaz R (2016) Where to combat shrub encroachment in alpine timberline ecosystems: combining remotely-sensed vegetation information with species habitat modelling. PLoS One 11(10):e0164318CrossRefPubMedPubMedCentralGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference—a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  14. Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5:360–364CrossRefGoogle Scholar
  15. Chamberlain DE, Negro M, Caprio E, Rolando A (2013) Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biol Conserv 167:127–135CrossRefGoogle Scholar
  16. Chamberlain DE, Brambilla M, Pedrini P, Caprio E, Rolando A (2016) Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia 181:1139–1150CrossRefPubMedGoogle Scholar
  17. Dirnböck T, Essl F, Babitsch W (2011) Disproportional risk for habitat loss of high altitude endemic species under climate change. Glob Change Biol 17:990–996CrossRefGoogle Scholar
  18. Freemark KE, Merriam HG (1986) Importance of area and habitat heterogeneity to bird assemblages in temperate forest fragments. Biol Conserv 36:115–141CrossRefGoogle Scholar
  19. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18(571):582Google Scholar
  20. Guerta RS, Cintra RR (2014) Effects of habitat structure on the spatial distribution of two species of Tinamous (Aves: Tinamidae) in a Amazon terra-firme forest. Ornitol Neotrop 25(1):73–86Google Scholar
  21. Hallinger M, Manthey M, Wilmking M (2010) Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol 186:890–899CrossRefPubMedGoogle Scholar
  22. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are tree lines advancing? A global meta-analysis of tree line response to climate warming. Ecol Lett 12:1040–1049CrossRefPubMedGoogle Scholar
  23. Hovick TJ, Elmore RD, Fuhlendorf SD (2014) Structural heterogeneity increases diversity of non-breeding grassland birds. Ecosphere 5(5):62CrossRefGoogle Scholar
  24. Kapos VJ, Rhind J, Edwards M, Price MF, Ravilious C (2000) Developing a map of the world’s mountain forests. In: Price MF, Butt N (eds) Forests in sustainable mountain development: a state-of-knowledge report for 2000. CAB International, Wallingford, pp 4–9CrossRefGoogle Scholar
  25. Komac B, Esteban P, Trapero L, Caritg R (2016) Modelization of the current and future habitat suitability of Rhododendron ferrugineum using potential snow accumulation. PLoS One 11(1):e0147324CrossRefPubMedPubMedCentralGoogle Scholar
  26. Körner C, Ohsawa M (2006) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystem and human well-being: current state and trends. Millennium ecosystem assessment. Island Press, Washington, pp 681–716Google Scholar
  27. Laiolo P, Dondero F, Ciliento E, Rolando A (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. J Appl Ecol 41:294–304CrossRefGoogle Scholar
  28. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771CrossRefPubMedGoogle Scholar
  29. MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598CrossRefGoogle Scholar
  30. MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Gutierrez Lazpita J, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manage 59:47–69CrossRefGoogle Scholar
  31. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23CrossRefPubMedGoogle Scholar
  32. Mueggler WF (1965) Cattle distribution on steep slopes. J Range Manage 18:255–257CrossRefGoogle Scholar
  33. Neuner G (2014) Frost resistance in alpine woody plants. Front Plant Sci 5:654CrossRefPubMedPubMedCentralGoogle Scholar
  34. Neuner G, Ambach D, Aichner K (1999) Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiol 19:725–732CrossRefPubMedGoogle Scholar
  35. Patthey P, Signorell N, Rotelli L, Arlettaz R (2012) Vegetation structural and compositional heterogeneity as a key feature in Alpine Black Grouse microhabitat selection: conservation management implications. Eur J Wildl Res 58:59–70CrossRefGoogle Scholar
  36. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansion and contractions of vascular plants in the high Alps: observations (1994-2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156CrossRefGoogle Scholar
  37. Pittarello M, Probo M, Lonati M, Bailey DW, Lombardi G (2015) Effects of traditional salt placement and strategically placed mineral mix supplements on cattle distribution in the Western Italian Alps. Grass Forage Sci 71(4):529–539CrossRefGoogle Scholar
  38. Pittarello M, Probo M, Lonati M, Lombardi G (2016) Restoration of sub-alpine shrub-encroached grasslands through pastoral practices: effects on vegetation structure and botanical composition. Appl Veg Sci 19(3):381–390CrossRefGoogle Scholar
  39. Pornon A, Doche B (1996) Age structure and dynamics of Rhododendron ferrugineum L. populations in the northwestern French Alps. J Veg Sci 7:265–272CrossRefGoogle Scholar
  40. Probo M, Massolo A, Lonati M, Bailey DW, Gorlier A, Maurino L, Lombardi G (2013) Use of mineral mix supplements to modify the grazing patterns by cattle for the restoration of sub-alpine and alpine shrub-encroached grasslands. Rangeland J 35:85–93CrossRefGoogle Scholar
  41. Probo M, Lonati M, Pittarello M, Bailey DW, Garbarino M, Gorlier A, Lombardi G (2014) Implementation of a rotational grazing system with large paddocks changes the distribution of grazing cattle in the south-western Italian Alps. Rangeland J 36:445–458CrossRefGoogle Scholar
  42. Probo M, Pittarello M, Lonati M, Lombardi G (2016) Targeted grazing for the restoration of sub-alpine shrub-encroached grasslands. Ital J Agron 11(4):268–272CrossRefGoogle Scholar
  43. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Rolando A, Caprio E, Rinaldi E, Ellena I (2007) The impact of high-altitude ski-runs on alpine grassland bird communities. J Appl Ecol 44:210–219CrossRefGoogle Scholar
  45. Roura-Pascual N, Pons P, Etienne M, Lambert B (2005) Transformation of a rural landscape in the Eastern Pyrenees Between 1953 and 2000. Mt Res Dev 25(3):252–261CrossRefGoogle Scholar
  46. Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008) Climate change, elevational range shifts and bird extinctions. Conserv Biol 22:140–150CrossRefPubMedGoogle Scholar
  47. Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109CrossRefGoogle Scholar
  48. Tocco C, Probo M, Lonati M, Lombardi G, Negro M, Nervo B, Rolando A, Palestrini C (2013) Pastoral practices to reverse shrub encroachment of sub-alpine grasslands: dung beetles (Coleoptera, Scarabaeoidea) respond more quickly than vegetation. PLoS One 8(12):e83344CrossRefPubMedPubMedCentralGoogle Scholar
  49. Viterbi R, Cerrato C, Bassano B, Bionda R, von Hardenberg A, Provenzale A, Bogliani G (2013) Patterns of biodiversity in the northwestern Italian Alps: a multi-taxa approach. Community Ecol 14:18–30CrossRefGoogle Scholar
  50. von dem Bussche F, Spaar R, Schmid H, Schröder B (2008) Modelling the recent and potential future spatial distribution of the Ring Ouzel (Turdus torquatus) and Blackbird (T. merula) in Switzerland. J Orn 149:529–544CrossRefGoogle Scholar
  51. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R, 1st edn. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  • Susanne Jähnig
    • 1
  • Riccardo Alba
    • 1
  • Cristina Vallino
    • 1
  • Domenico Rosselli
    • 2
  • Marco Pittarello
    • 3
  • Antonio Rolando
    • 1
  • Dan Chamberlain
    • 1
  1. 1.Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
  2. 2.Ente di Gestione delle Aree Protette delle Alpi CozieSalbertrandItaly
  3. 3.Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly

Personalised recommendations