Advertisement

Journal of Ornithology

, Volume 159, Issue 2, pp 483–491 | Cite as

Species-specific nest predation depends on the total passerine nest density in open-nesting passerines

  • Dmitry Shitikov
  • Tatiana Vaytina
  • Tatiana Makarova
  • Svetlana Fedotova
  • Vera Volkova
  • Stanislav Samsonov
Original Article

Abstract

A large part of the variation in bird reproductive success is often explained by nest predation. Many studies report negative relationships between breeding density and reproductive success due to the predation effect. In this study, we tested the hypothesis that the total nest density should affect nest predation stronger than the nest density of a single species. We used a large sample (n = 320) of Booted Warbler Iduna caligata and Whinchat Saxicola rubetra nests obtained during a period of 6 years in abandoned fields. We used model selection to evaluate effects of density, nest age, season and year on daily nest survival rate. We used a single-species (the distance to the nearest conspecific nest and the number of conspecific nests around the focal nest) and total (the distance to the nearest nest of any passerine species and the total number of passerine nests around the focal nest) nest-density variables. Our results suggest that nest density affects nest survival negatively. Both Booted Warbler and Whinchat nests were more likely to be depredated when neighboring nests of any passerine species were closer. Daily nest survival rates were better predicted by the total nest density than single-species nest density. We suggest that generalist predators performing an area-restricted search may play an important role in nest predation in abandoned fields. The total nest density should be estimated when studying density-dependent nest predation as conclusions about nest predation based on single-species nest densities may be incorrect. The potential impact of density-dependent predation on real nests should be considered when designing artificial nest experiments.

Keywords

Nearest neighbor Booted Warbler Whinchat Nest survival Passerine 

Zusammenfassung

Die artspezifische Rate der Nestprädation hängt bei offenbrütenden Singvögeln von der gesamten Nestdichte aller Arten ab

Ein Großteil der Variation im Bruterfolg von Vögeln wird häufig mit der Nestprädationsrate erklärt. Viele Studien berichten von negativen Beziehungen zwischen Brutdichte und Bruterfolg aufgrund des Prädationseffekts. In der vorliegenden Arbeit testeten wir die Hypothese, dass die Gesamtnestdichte die Nestprädation stärker beeinflusst als die Nestdichte einer einzelnen Art. Wir verwendeten eine große Stichprobe (n = 320) von Nestern des Buschspötters (Iduna caligata) und des Braunkehlchens (Saxicola rubetra), die im Verlauf von sechs Jahren in brachgelegten Feldern gefunden worden waren. Wir nutzten ein Modellauswahlverfahren, um die Effekte von Nestdichte, Alter, Saison und Jahr auf die tägliche Überlebensrate der Nester zu bestimmen. Wir verwendeten Nestdichtevariablen einer einzigen Art (Distanz zum nächsten Nest der gleichen Art und die Anzahl Nester der gleichen Art um das jeweilig betrachtete Nest) und Variablen der Gesamtnestdichte (Distanz zum nächsten Nest aller Singvogelarten und die Gesamtzahl an Singvogelnestern um das jeweilig betrachtete Nest). Unsere Ergebnisse legen nahe, dass die Nestdichte die Überlebenswahrscheinlichkeit eines Nests negativ beeinflusst. Sowohl Buschspötter wie auch Braunkehlchennester fielen mit einer erhöhten Wahrscheinlichkeit Prädation zum Opfer, wenn benachbarte Singvogelnester von gleich welcher Art näher lagen. Die täglichen Überlebensraten der Nester wurden von der Gesamtnestdichte besser vorhergesagt als von der Nestdichte einer einzelnen Art. Wir nehmen an, dass Generalisten unter den Prädatoren, die in bereichsbeschränkten Mustern nach Nahrung suchen, eine bedeutende Rolle bei der Nestprädation in brachgelegten Feldern zukommt. Wenn man dichteabhängige Nestprädation untersucht, sollte die Gesamtnestdichte abgeschätzt werden, und Ergebnisse zur Nestprädation, die auf den Nestdichten einer einzigen Art beruhen, können inkorrekt sein. Der potentielle Einfluss von dichteabhängiger Prädation auf echte Nester sollte bei der Konzeption von Experimenten mit Kunstnestern berücksichtigt werden.

Notes

Acknowledgements

This study was funded by the Russian Foundation for Basic Research (grant numbers 13-04-00745 and 16-04-01383). The fieldwork in the Russky Sever National Park was made possible with the support of the administration of the park, particularly A. L. Kuznetsov and L. V. Kuznetsova. Students and graduates of the Department of Zoology and Ecology, Moscow Pedagogical State University were involved in the fieldwork. We thank Jere Tolvanen and the anonymous reviewers for their help in improving the manuscript.

References

  1. Ackerman JT, Blackmer AL, Eadie JM (2004) Is predation on duck nests density dependent? Tests at three spatial scales. Oikos 107:128–140.  https://doi.org/10.1111/j.0030-1299.2004.13226.x CrossRefGoogle Scholar
  2. Andrén H (1991) Predation: an overrated factor for over-dispersion of birds’ nests? Anim Behav 41:1063–1069.  https://doi.org/10.1016/S0003-3472(05)80644-X CrossRefGoogle Scholar
  3. Andrén H (1992) Corvid density and nest predation in relation to forest fragmentation: a landscape perspective. Ecology 73:794–804.  https://doi.org/10.2307/1940158 CrossRefGoogle Scholar
  4. Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manage 74:1175–1178.  https://doi.org/10.2193/2009-367 CrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  6. Chalfoun AD, Thompson FR, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and meta-analysis. Conserv Biol 16:306–318.  https://doi.org/10.1046/j.1523-1739.2002.00308.x CrossRefGoogle Scholar
  7. Chamberlain DE, Hatchwell BJ, Perrins CM (1995) Spaced out nests and predators: an experiment to test the effects of habitat structure. J Avian Biol 26:346.  https://doi.org/10.2307/3677052 CrossRefGoogle Scholar
  8. Dinsmore SJ, White GC, Knopf FL et al (2002) Advanced techniques for modeling avian nest survival. Ecology 83:3476–3488. https://doi.org/10.1890/0012-9658(2002)083[3476:atfman]2.0.co;2Google Scholar
  9. Dunn E (1977) Predation by Weasels (Mustela nivalis) on breeding tits (Parus spp.) in relation to the density of tits and rodents. J Anim Ecol 46:633–652CrossRefGoogle Scholar
  10. Dunn JC, Hamer KC, Benton TG (2015) Anthropogenically-mediated density dependence in a declining farmland bird. PLoS ONE 10:e0139492.  https://doi.org/10.1371/journal.pone.0139492 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Elmberg J, Pöysä H (2011) Is the risk of nest predation heterospecifically density-dependent in precocial species belonging to different nesting guilds? Can J Zool 89:1164–1171.  https://doi.org/10.1139/z11-093 CrossRefGoogle Scholar
  12. Evans KL (2004) The potential for interactions between predation and habitat change to cause population declines of farmland birds. Ibis 146:1–13.  https://doi.org/10.1111/j.1474-919X.2004.00231.x CrossRefGoogle Scholar
  13. Fletcher K, Aebischer NJ, Baines D et al (2010) Changes in breeding success and abundance of ground-nesting moorland birds in relation to the experimental deployment of legal predator control. J Appl Ecol 47:263–272.  https://doi.org/10.1111/j.1365-2664.2010.01793.x CrossRefGoogle Scholar
  14. Goslee S, Urban D (2017) Package ‘ecodist’ R package version 2.0. https://CRAN.R-project.org/package=ecodist. Accessed 8 Feb 2017
  15. Grant TA, Shaffer TL, Madden EM et al (2005) Time-specific variation in passerine nest survival: new insights into old questions. Auk 122:661–672. https://doi.org/10.1642/0004-8038(2005)122[0661:tvipns]2.0.co;2Google Scholar
  16. Grendelmeier A, Arlettaz R, Gerber M, Pasinelli G (2015) Reproductive performance of a declining forest passerine in relation to environmental and social factors: implications for species conservation. PLoS ONE 10:e0130954.  https://doi.org/10.1371/journal.pone.0130954 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gunnarsson G, Elmberg J (2007) Density-dependent nest predation—an experiment with simulated Mallard nests in contrasting landscapes. Ibis 150:259–269.  https://doi.org/10.1111/j.1474-919X.2007.00772.x CrossRefGoogle Scholar
  18. Hijmans RJ, Williams E, Vennes C (2017) Geosphere: spherical trigonometry for geographic applications version 1.5–5.  https://CRAN.R-project.org/package=geosphere. Accessed 8 Feb 2017
  19. Hoi H, Winkler H (1994) Predation on nests: a case of apparent competition. Oecologia 98:436–440.  https://doi.org/10.1007/BF00324234 CrossRefPubMedGoogle Scholar
  20. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211.  https://doi.org/10.2307/1942661 CrossRefGoogle Scholar
  21. Klug P, Wolfenbarger LL, McCarty JP (2009) The nest predator community of grassland birds responds to agroecosystem habitat at multiple scales. Ecography 32:973–982.  https://doi.org/10.1111/j.1600-0587.2009.05857.x CrossRefGoogle Scholar
  22. Krebs JR (1971) Territory and breeding density in the Great Tit, Parus major L. Ecology 52:2–22.  https://doi.org/10.2307/1934734 CrossRefGoogle Scholar
  23. Larivière S, Messier FF, Lariviere S, Messier FF (1998) Effect of density and nearest neighbours on simulated waterfowl nests: can predators recognize high-density nesting patches? Oikos 83:12–20.  https://doi.org/10.2307/3546541 CrossRefGoogle Scholar
  24. MacDonald EC, Camfield AF, Martin M et al (2016) Nest-site selection and consequences for nest survival among three sympatric songbirds in an alpine environment. J Ornithol 157:393–405.  https://doi.org/10.1007/s10336-015-1286-2 CrossRefGoogle Scholar
  25. Marini MÂ (1997) Predation-mediated bird nest diversity: an experimental test. Can J Zool 75:317–323.  https://doi.org/10.1139/z97-040 CrossRefGoogle Scholar
  26. Martin TE (1988) On the advantage of being different: nest predation and the coexistence of bird species. Proc Natl Acad Sci USA 85:2196–2199CrossRefPubMedPubMedCentralGoogle Scholar
  27. Martin TE (1993) Nest predation and nest sites: new perspective on old patterns. Bioscience 43:523–532.  https://doi.org/10.2307/1311947 CrossRefGoogle Scholar
  28. Martin TE (1996) Fitness costs of resource overlap among coexisting bird species. Nature 380:338–340.  https://doi.org/10.1038/380338a0 CrossRefGoogle Scholar
  29. Martin PR, Martin TE (2001) Ecological and fitness consequences of species coexistence: a removal experiment with Wood Warblers. Ecology 82:189–206. https://doi.org/10.1890/0012-9658(2001)082[0189:EAFCOS]2.0.CO;2Google Scholar
  30. McKellar AE, Marra PP, Boag PT, Ratcliffe LM (2014) Form, function and consequences of density dependence in a long-distance migratory bird. Oikos 123:356–364.  https://doi.org/10.1111/j.1600-0706.2013.00756.x CrossRefGoogle Scholar
  31. Melles SJ, Badzinski D, Fortin M-J et al (2009) Disentangling habitat and social drivers of nesting patterns in songbirds. Landsc Ecol 24:519–531.  https://doi.org/10.1007/s10980-009-9329-9 CrossRefGoogle Scholar
  32. Mikula P, Hromada M, Albrecht T, Tryjanowski P (2014) Nest site selection and breeding success in three Turdus thrush species coexisting in an urban environment. Acta Ornithol 49:83–92.  https://doi.org/10.3161/000164514x682913 CrossRefGoogle Scholar
  33. Perry EF, Andersen DE (2003) Advantages of clustered nesting for Least Flycatchers in North-Central Minnesota. Condor 105:756.  https://doi.org/10.1650/7162 CrossRefGoogle Scholar
  34. Quinn JL, Ueta M (2008) Protective nesting associations in birds. Ibis 150:146–167.  https://doi.org/10.1111/j.1474-919X.2008.00823.x CrossRefGoogle Scholar
  35. R Core Team (2015) R: a language and environment for statistical computing, 3.2.3 edn. R Foundation for Statistical Computing, Vienna, https://www.r-project.org/
  36. Ricklefs RE (1969) An analysis of nesting mortality in birds. Smithson Contrib Zool 9:1–48CrossRefGoogle Scholar
  37. Ringelman KM, Eadie JM, Ackerman JT (2012) Density-dependent nest predation in waterfowl: the relative importance of nest density versus nest dispersion. Oecologia 169:695–702.  https://doi.org/10.1007/s00442-011-2228-1 CrossRefPubMedGoogle Scholar
  38. Ringelman KM, Eadie JM, Ackerman JT (2014) Adaptive nest clustering and density-dependent nest survival in dabbling ducks. Oikos 123:239–247.  https://doi.org/10.1111/j.1600-0706.2013.00851.x CrossRefGoogle Scholar
  39. Roos S (2002) Functional response, seasonal decline and landscape differences in nest predation risk. Oecologia 133:608–615.  https://doi.org/10.1007/s00442-002-1056-8 CrossRefPubMedGoogle Scholar
  40. Schmidt KA, Whelan CJ (1998) Predator-mediated interactions between and within guilds of nesting songbirds: experimental and observational evidence. Am Nat 152:393–402.  https://doi.org/10.1086/286177 PubMedGoogle Scholar
  41. Schmidt KA, Whelan CJ (1999) Nest predation on woodland songbirds: when is nest predation density dependent? Oikos 87:65.  https://doi.org/10.2307/3546997 CrossRefGoogle Scholar
  42. Seymour AS, Harris S, Ralston C, White PCL (2003) Factors influencing the nesting success of Lapwings Vanellus vanellus and behaviour of Red Fox Vulpes vulpes in Lapwing nesting sites. Bird Study 50:39–46.  https://doi.org/10.1080/00063650309461288 CrossRefGoogle Scholar
  43. Sherry TW, Wilson S, Hunter S, Holmes RT (2015) Impacts of nest predators and weather on reproductive success and population limitation in a long-distance migratory songbird. J Avian Biol 46:559–569.  https://doi.org/10.1111/jav.00536 CrossRefGoogle Scholar
  44. Shitikov DA, Fedotova SE, Gagieva VA (2012) Nest survival, predators and breeding performance of Booted Warblers Iduna caligata in the abandoned fields of the North of European Russia. Acta Ornithol 47:137–146.  https://doi.org/10.3161/000164512X662241 CrossRefGoogle Scholar
  45. Shitikov DA, Fedotova SE, Redkin YA, Butev VT (2014) Birds of Russia and adjacent territories. Booted Warbler Iduna caligata [In Russian]. Russ Ornithol J 23:3593–3623Google Scholar
  46. Shitikov DA, Vaytina TM, Gagieva VA, Fedchuk DV (2015) Breeding success affects site fidelity in a Whinchat Saxicola rubetra population in abandoned fields. Bird Study 62:96–105.  https://doi.org/10.1080/00063657.2014.988120 CrossRefGoogle Scholar
  47. Sillett TS, Holmes RT (2005) Long-term demographic trends, limiting factors, and the strength of density dependence in a breeding population of a migratory songbird. Birds of two worlds: advances in the ecology and evolution of temperate–tropical migration systems. Johns Hopkins University Press, Baltimore, pp 426–436Google Scholar
  48. Sofaer HR, Sillett TS, Langin KM et al (2014) Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population. Ecol Evol 4:2738–2748.  https://doi.org/10.1002/ece3.1127 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Stephens SE, Rotella JJ, Lindberg MS et al (2005) Duck nest survival in the Missouri Coteau of North Dakota: landscape effects at multiple spatial scales. Ecol Appl 15:2137–2149.  https://doi.org/10.1890/04-1162 CrossRefGoogle Scholar
  50. Szymkowiak J, Kuczyński L (2015) Predation-related costs and benefits of conspecific attraction in songbirds—an agent-based approach. PLoS ONE 10:e0119132.  https://doi.org/10.1371/journal.pone.0119132 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Thompson FR, Burhans DE (2003) Predation of songbird nests differs by predator and between field and forest habitats. J Wildl Manage 67:408–416.  https://doi.org/10.2307/3802781 CrossRefGoogle Scholar
  52. Tinbergen N, Impekoven M, Franck D (1967) An experiment on spacing-out as a defence against predation. Behaviour 28:307–320.  https://doi.org/10.1163/156853967X00064 CrossRefGoogle Scholar
  53. Tome D, Denac D (2012) Survival and development of predator avoidance in the post-fledging period of the Whinchat (Saxicola rubetra): consequences for conservation measures. J Ornithol 153:131–138.  https://doi.org/10.1007/s10336-011-0713-2 CrossRefGoogle Scholar
  54. Visco DM, Sherry TW (2015) Increased abundance, but reduced nest predation in the Chestnut-backed Antbird in Costa Rican rainforest fragments: surprising impacts of a pervasive snake species. Biol Conserv 188:22–31.  https://doi.org/10.1016/j.biocon.2015.01.015 CrossRefGoogle Scholar
  55. Zimmerman JL (1984) Nest predation and its relationship to habitat and nest density in Dickcissels. Condor 86:68.  https://doi.org/10.2307/1367348 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Zoology and Ecology DepartmentMoscow Pedagogical State UniversityMoscowRussia

Personalised recommendations