Journal of Ornithology

, Volume 159, Issue 2, pp 425–437 | Cite as

Sexual segregation in tropical seabirds: drivers of sex-specific foraging in the Brown Booby Sula leucogaster

  • Mark G. R. Miller
  • Fabiola R. O. Silva
  • Gabriel E. Machovsky-Capuska
  • Bradley C. Congdon
Original Article


Sexual segregation in the behaviour, morphology or physiology of breeding seabirds can be related to divergent parental roles, foraging niche partitioning or sex-specific nutritional requirements. Here, we combine GPS tracking, dietary and nutritional analysis to investigate sex-specific foraging of Brown Boobies breeding on Raine Island, Great Barrier Reef, Australia. We observed sex-specific segregation in: (1) foraging location: females undertook longer trips, foraging at more distant locations than males; (2) foraging time: male activity and foraging occurred throughout the day, while female activity and foraging increased from midday to an afternoon peak; and (3) prey type, females mostly consumed flying fish, whereas males consumed equal proportions of flying fish and squid. Brown Booby diets contained five tropical prey species that significantly differed in their nutritional composition (Protein, Lipid and Water, wet mass). Despite this variation we found no differences in the overall nutritional content of prey caught by each sex. The observed sex-specific differences in prey type, location and time of capture are likely driven by a combination of a division of labour, risk partitioning and competition. However, Brown Boobies breeding on Raine Island, and other populations, might flexibly partition foraging niches by sex in response to varying competitive and environmental pressures. In light of such potential foraging dynamism, our inconclusive exploration of nutritional segregation between sexes warrants further investigation in the species.


Foraging strategy Great Barrier Reef Prey Right-angle mixture triangle (RMT) Sexual segregation Sula leucogaster 


Sexuelle Segregation bei tropischen Seevögeln: Einflussfaktoren geschlechtsspezifischer Nahrungssuche bei Weißbauchtölpeln Sula leucogaster Sexuelle Segregation in Verhalten, Morphologie oder Physiologie brütender Seevögel kann mit unterschiedlichen Elternrollen, Nahrungsnischendifferenzierung oder geschlechtsspezifischem Nährstoffbedarf zusammenhängen. Hier kombinieren wir GPS-Ortung mit Nahrungs- und Nährstoffanalysen, um die geschlechtsspezifische Nahrungssuche bei auf Raine Island im australischen Great Barrier Reef brütenden Weißbauchtölpeln zu untersuchen. Wir haben geschlechtsspezifische Segregation gefunden in Bezug auf (a) den Ort der Nahrungssuche: Weibchen unternahmen längere Suchflüge als Männchen, da sie an weiter entfernten Orten nach Nahrung suchten; (b) den Zeitpunkt der Nahrungssuche: Männchen waren den ganzen Tag über aktiv und suchten nach Nahrung, während bei Weibchen die Aktivität und Nahrungssuche von mittags an zunahmen und am Nachmittag ihren Höhepunkt erreichten; (c) Beutetyp: Weibchen fraßen hauptsächlich fliegende Fische, während Männchen zu gleichen Teilen fliegende Fische und Kalmare verzehrten. Die Weißbauchtölpel nutzten fünf tropische Beutearten, die sich signifikant in ihrer Nährstoffzusammensetzung (Proteine, Lipide und Wasser in der Feuchtmasse) unterschieden. Trotz dieser Variation fanden wir keine Unterschiede im Gesamtnährstoffgehalt der von männlichen und weiblichen Tölpeln gefangenen Beute. Die beobachteten geschlechtsspezifischen Unterschiede im Beutetyp sowie Ort und Zeitpunkt des Beutefangs kommen wahrscheinlich durch eine Kombination von Arbeitsteilung, Risikoaufteilung und Konkurrenz zustande. Bei den auf Raine Island sowie in anderen Populationen brütenden Weißbauchtölpeln könnten die Geschlechter die Nahrungsnische flexibel unter sich aufteilen, abhängig von wechselnden Konkurrenz- und Umweltdrücken. Angesichts von solchem potenziellen Nahrungsdynamismus rechtfertigt unsere nicht beweiskräftige Erforschung der geschlechtsspezifischen Nahrungssegregation weitere Untersuchungen an Weißbauchtölpeln.



We would like to thank Damon Shearer, Andrew Dunstan and crew of the QPWS Reef Ranger for transport, accommodation and logistical support on and off of Raine Island. We also thank two anonymous reviewers, whose comments significantly improved the manuscript. This research was funded by the Australian Research Council (ARC) LP 0562157, the Marine and Tropical Sciences Research Facility (MTSRF), the Great Barrier Reef Marine Park Authority (GBRMPA) and National Environmental Research Program (NERP). Fieldwork procedures were authorised under James Cook University Ethics Approval A1992. GEMC is supported by the Loxton research fellowship from The University of Sydney.

Supplementary material

10336_2017_1512_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 kb)


  1. Allen G (2009) Field guide to marine fishes of tropical Australia. Western Australian Museum, PerthGoogle Scholar
  2. AOAC (2002) Official methods of analysis of AOAC International, 17th edn. Association of Official Analytical Chemists, Washington DCGoogle Scholar
  3. AOAC (2005) Official methods of analysis of AOAC International, 18th edn. Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  4. Ashmole NP, Ashmole MJ (1967) Comparative feeding ecology of sea birds of a Tropical Oceanic Island. Peabody Mus Nat Hist Bull 24:1–131Google Scholar
  5. Bates D, Maechler M, Bolker BM, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  6. Batianoff GN, Cornelius NJ (2005) Birds of Raine Island: population trends, breeding behaviour and nesting habitats. Proc R Soc Qld 112:1–29Google Scholar
  7. Blaber SJM, Milton D, Smith GC, Farmer MJ (1995) Trawl discards in the diets of tropical seabirds of the Northern Great Barrier Reef, Australia. Mar Ecol Prog Ser 127:1–13CrossRefGoogle Scholar
  8. Blaber SJM, Milton D, Farmer MJ, Smith GC (1998) Seabird breeding populations on the far Northern Great Barrier Reef, Australia: trends and influences. Emu 98:44–57CrossRefGoogle Scholar
  9. Boyd C, Punt AE, Weimerskirch H, Bertrand S (2014) Movement models provide insights into variation in the foraging effort of central place foragers. Ecol Model 286:13–25CrossRefGoogle Scholar
  10. Calenge C (2006) The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  11. Castillo-Guerrero JA, Lerma M, Mellink E, Suazo-Guillén E, Peñaloza-Padilla EA (2016) Environmentally-mediated flexible foraging strategies in Brown Boobies in the Gulf of California. Ardea 104:33–47CrossRefGoogle Scholar
  12. Cleasby IR, Wakefield ED, Bodey TW, Davies RD, Patrick SC, Newton J, Votier SC, Bearhop S, Hamer KC (2015) Sexual segregation in a wide-ranging marine predator is a consequence of habitat selection. Mar Ecol Prog Ser 518:1–12CrossRefGoogle Scholar
  13. Clua É, Grosvalet F (2001) Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat Living Resour 14:11–18. CrossRefGoogle Scholar
  14. Congdon BC, Preker M (2004) Sex-specific chick provisioning and kleptoparasitism in the Least Frigatebird, Fregata ariel. Emu. 104:347–351. CrossRefGoogle Scholar
  15. Cortés E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54:726–738CrossRefGoogle Scholar
  16. Cruz SM, Hooten M, Huyvaert KP, Proaño CB, Anderson DJ, Afanasyev V, Wikelski M (2013) At-sea behavior varies with Lunar Phase in a Nocturnal Pelagic Seabird, the Swallow-tailed gull. PLoS One 8:1–8CrossRefGoogle Scholar
  17. Denuncio P, Viola M, Machovsky-Capuska GE, Raubenheimer D, Blasina G, Machado R, Polizzi P, Gerpe M, Cappozzo HL, Rodriguez DH (2017) Population variance in prey, diets and their macronutrient composition in an endangered marine predator, the Franciscana dolphin. J Sea Res. Google Scholar
  18. Duffy DC, Jackson S (1986) Diet studies of seabirds: a review of methods. Colon Waterbirds 9:1–17CrossRefGoogle Scholar
  19. Elliott KH, Gaston AJ, Crump D (2010) Sex-specific behavior by a monomorphic seabird represents risk partitioning. Behav Ecol 21:1024–1032CrossRefGoogle Scholar
  20. Gilardi JD (1992) Sex-specific foraging distributions of Brown Boobies in the Eastern Tropical Pacific. Colon Waterbirds 15:148–151CrossRefGoogle Scholar
  21. González-Solís J, Croxall JP, Wood AG (2000) Sexual dimorphism and sexual segregation in foraging strategies of Northern giant petrels, Macronectes halli, during incubation. Oikos 90:390–398. CrossRefGoogle Scholar
  22. Guerra M, Drummond H (1995) Reversed size dimorphism and parental care: minimal division of labour in the blue-footed Booby. Behaviour 132:479–797CrossRefGoogle Scholar
  23. Ismar SMH, Raubenheimer D, Bury SJ, Millar CD, Hauber ME (2017) Sex-specific foraging during parental care in a size-monomorphic seabird, the Australasian Gannet (Morus serrator). Wilson J Ornithol 129:139–147. CrossRefGoogle Scholar
  24. Lascelles B, Taylor P, Miller MGR, Dias MP, Oppel S, Torres L, Hedd A, Le Corre M, Phillips RA, Schaffer S, Weimerskirch H, Small C (2016) Applying global criteria to tracking data to define important areas for marine conservation. Divers Distrib 22:422–431CrossRefGoogle Scholar
  25. Lewis S, Sherratt TN, Hamer KC, Wanless S (2001) Evidence of intra-specific competition for food in a pelagic seabird. Nature 412:816–819CrossRefPubMedGoogle Scholar
  26. Lewis S, Benvenuti S, DallAntonia L, Griffiths R, Money L, Sherratt TN, Wanless S, Hamer KC (2002) Sex-specific foraging behaviour in a monomorphic seabird. Proc R Soc Lond B 269:1687–1693. CrossRefGoogle Scholar
  27. Lewis S, Schreiber E, Daunt F, Schenk G, Orr K, Adams A, Wanless S, Hamer KC (2005) Sex-specific foraging behaviour in tropical Boobies: does size matter? Ibis 147:408–414. CrossRefGoogle Scholar
  28. Lormee H, Barbraud C, Chastel O (2005) Reversed sexual size dimorphism and parental care in the Red-Footed Booby Sula sula. Ibis 147:307–315. CrossRefGoogle Scholar
  29. Machovsky-Capuska GE, Priddel D, Leong PH, Jones P, Carlile N, Shannon L, Portelli D, McEwan A, Chaves AV, Raubenheimer D (2016a) Coupling bio-logging with nutritional geometry to reveal novel insights into the foraging behaviour of a plunge-diving marine predator. NZ J Mar Freshwat Res 8330:1–15. Google Scholar
  30. Machovsky-Capuska GE, Senior AM, Benn EC, Tait AH, Schuckard R, Stockin KA, Cook W, Ogle M, Barna K, Melville D, Wright B, Purvin C, Raubenheimer D (2016b) Sex-specific macronutrient foraging strategies in a highly successful marine predator: the Australasian Gannet. Mar Biol 163:1–14. CrossRefGoogle Scholar
  31. Machovsky-Capuska GE, Senior AM, Simpson SJ, Raubenheimer D (2016c) The multi-dimensional nutritional niche. Trends Ecol Evol 31:355–365. CrossRefPubMedGoogle Scholar
  32. Michelot T, Langrock R, Patterson TA (2016) moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol Evol 7:1308–1315CrossRefGoogle Scholar
  33. Min D, Steensen D (1998) Crude fat analysis. Food Anal 2:201–216Google Scholar
  34. Moltschaniwskyj N, Doherty P (1995) Cross-shelf distribution patterns of tropical juvenile cephalopods sampled with light-traps. Mar Freshw Res 46:707–714CrossRefGoogle Scholar
  35. Morris-Pocock JA, Anderson DJ, Friesen VL (2011) Mechanisms of global diversification in the brown booby (Sula leucogaster) revealed by uniting statistical phylogeographic and multilocus phylogenetic methods. Mol Ecol 20:2835–2850CrossRefPubMedGoogle Scholar
  36. Morse DH (1968) A quantitative study of foraging of male and female spruce-woods warblers. Ecol Soc Am 49:779–784Google Scholar
  37. Nelson B (1978) The Sulidae: gannets and boobies. Oxford University Press, OxfordGoogle Scholar
  38. Newton I (1979) Population ecology of raptors. T. & A.D. Poyser, BerkhamstedGoogle Scholar
  39. NRC (1989) Recommended dietary allowances, 10th edn. National Academy Press, Washington DCGoogle Scholar
  40. Nunes GT, Mancini PL, Bugoni L (2016) When Bergmann’s rule fails: evidences of environmental selection pressures shaping phenotypic diversification in a widespread seabird. Ecography 40:365–375CrossRefGoogle Scholar
  41. Oppel S, Beard A, Fox D, Mackley E, Leat E, Henry L, Clingham E, Fowler N, Sim J, Sommerfeld J, Weber N, Weber S, Bolton M (2015) Foraging distribution of a tropical seabird supports Ashmoles hypothesis of population regulation. Behav Ecol Sociobiol 69:915–926CrossRefGoogle Scholar
  42. Paiva VH, Pereira J, Ceia FR, Ramos JA (2017) Environmentally driven sexual segregation in a marine top predator. Sci Rep 7:2590CrossRefPubMedPubMedCentralGoogle Scholar
  43. Peck DR, Congdon BC (2006) Sex-specific chick provisioning and diving behaviour in the wedge-tailed shearwater Puffinus pacificus. J Avian Biol 37:245–251CrossRefGoogle Scholar
  44. Petit LJ, Petit DR, Petit KE, Fleming W (1990) Intersexual and temporal variation in foraging ecology of Prothonotary warblers during the breeding season. Auk 107:133–145Google Scholar
  45. Phillips RA, Silk JRD, Phalan B, Catry P, Croxall JP (2004) Seasonal sexual segregation in two Thalassarche albatross species: competitive exclusion, reproductive role specialization or foraging niche divergence? Proc R Soc Lond B 271:1283–1291. CrossRefGoogle Scholar
  46. Pontón-Cevallos J, Dwyer RG, Franklin CE, Bunce A (2017) Understanding resource partitioning in sympatric seabirds living in tropical marine environments. Emu Austral Ornithology. Google Scholar
  47. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  48. Randall J, Allen G, Steene R (1997) Fishes of the Great Barrier Reef and Coral Sea. University of Hawaii Press, HawaiiGoogle Scholar
  49. Raubenheimer D (2011) Toward a quantitative nutritional ecology: the right-angled mixture triangle. Ecol Monogr 81:407–427CrossRefGoogle Scholar
  50. Raubenheimer D, Machovsky-Capuska GE, Chapman CA, Rothman JM (2015) Geometry of nutrition in field studies: an illustration using wild primates. Oecologia 177:223–234CrossRefPubMedGoogle Scholar
  51. Schuckard R, Melville D, Cook W, Machovsky-Capuska G (2012) Diet of the Australasian Gannet (Morus serrator) at Farewell Spit, New Zealand. Notornis 59:66–70Google Scholar
  52. Selander RK (1966) Sexual dimorphism and differential niche utilization in birds. Condor 68:113–151CrossRefGoogle Scholar
  53. Shaffer SA, Weimerskirch H, Costa DP (2001) Functional significance of sexual dimorphism in wandering albatrosses, Diomedea exulans. Funct Ecol 15:203–210CrossRefGoogle Scholar
  54. Soanes LM, Bright JA, Bolton M, Millett J, Mukhida F, Green JA (2015) Foraging behaviour of Brown Boobies Sula leucogaster in Anguilla, Lesser Antilles: preliminary identification of at-sea distribution using a time-in-area approach. Bird Conserv Int 25:87–96. CrossRefGoogle Scholar
  55. Sommerfeld J, Kato A, Ropert-Coudert Y, Garthe S, Hindell MA (2013) The individual counts: within sex differences in foraging strategies are as important as sex-specific differences in Masked Boobies Sula dactylatra. J Avian Biol 44:531–540. CrossRefGoogle Scholar
  56. Spear LB, Ainley DG, Walker WA (2007) Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud Avian Biol 35:1–99Google Scholar
  57. Stahl JC, Sagar PM (2000) Foraging strategies and migration of southern Bullers albatrosses Diomedea b. bulleri breeding on the Solander Is, New Zealand. J R Soc N Z 30:319–334. CrossRefGoogle Scholar
  58. Tait A, Raubenheimer D, Stockin K, Merriman M, Machovsky-Capuska GE (2014) Nutritional geometry and the macronutrient variation in the diet of Gannets: the challenges in marine field studies. Mar Biol 12:2791–2801CrossRefGoogle Scholar
  59. Weimerskirch H, Le Corre M, Jaquemet S, Marsac F (2005) Foraging strategy of a tropical seabird, the Red-footed Booby, in a dynamic marine environment. Mar Ecol Prog Ser 288:251–261. CrossRefGoogle Scholar
  60. Weimerskirch H, Le Corre M, Ropert-Coudert Y, Kato A, Marsac F (2006) Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the Red-footed Booby. Oecologia 146:681–691. CrossRefPubMedGoogle Scholar
  61. Weimerskirch H, Le Corre M, Gadenne H, Pinaud D, Kato A, Ropert-Coudert Y, Bost CA (2009a) Relationship between reversed sexual dimorphism, breeding investment and foraging ecology in a pelagic seabird, the Masked Booby. Oecologia 161:637–649. CrossRefPubMedGoogle Scholar
  62. Weimerskirch H, Shaffer S, Tremblay Y, Costa DP, Gadenne H, Kato A, Ropert-Coudert Y, Sato K, Aurioles D (2009b) Species- and sex-specific differences in foraging behaviour and foraging zones in Blue-footed and Brown Boobies in the Gulf of California. Mar Ecol Prog Ser 391:267–278. CrossRefGoogle Scholar
  63. Young HS, McCauley DJ, Dirzo R, Dunbar RB, Shaffer S (2010) Niche partitioning among and within sympatric tropical seabirds revealed by stable isotope analysis. Mar Ecol Prog Ser 416:285–294. CrossRefGoogle Scholar
  64. Zavalaga CB, Benvenuti S, Dall’Antonia L, Emslie SD (2007) Diving behavior of Blue-footed Boobies Sula nebouxii in Northern Peru in relation to sex, body size and prey type. Mar Ecol Prog Ser 336:291–303. CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  • Mark G. R. Miller
    • 1
  • Fabiola R. O. Silva
    • 2
  • Gabriel E. Machovsky-Capuska
    • 2
    • 3
  • Bradley C. Congdon
    • 1
  1. 1.College of Science and Engineering and Centre for Tropical Environmental and Sustainability ScienceJames Cook UniversityCairnsAustralia
  2. 2.School of Life and Environmental SciencesThe University of SydneySydneyAustralia
  3. 3.Charles Perkins Centre, The University of SydneySydneyAustralia

Personalised recommendations