Journal of Ornithology

, Volume 159, Issue 1, pp 211–219 | Cite as

Cold weather increases winter site fidelity in a group-living passerine

  • Veli-Matti Pakanen
  • Juhani Karvonen
  • Jaana Mäkelä
  • Jukka-Pekka Hietaniemi
  • Tuomo Jaakkonen
  • Elina Kaisanlahti
  • Miila Kauppinen
  • Kari Koivula
  • Aappo Luukkonen
  • Seppo Rytkönen
  • Sami Timonen
  • Jere Tolvanen
  • Emma Vatka
  • Markku Orell
Original Article

Abstract

Site fidelity during the non-breeding season is beneficial if habitat quality and environmental predictability are high. In group-living species, the costs and benefits of site fidelity may be linked to the non-social (weather) and social (dominance hierarchy) environments, but little is known about factors influencing movements during the non-breeding season. We studied both within- and between-winter site fidelity of the great tit (Parus major), a partial migrant in northern Finland. We collected mark-resight data on wintering great tits across two winters at multiple sites, and tested for the effects of age, sex, season, temperature and day length on site fidelity. Within-winter movement was lower during mid-winter and decreased during cold periods. This pattern is probably linked to energy saving and predator escaping strategies during these demanding periods when energy expenditure is high and birds have limited daylight hours to forage. Site fidelity was lower for juveniles than adults within a winter, but it was unaffected by sex. These results agree with an age related dominance structure and site-specific dominance found in great tits, but they can also be related to prior experience as young individuals still collect information during their first winter. In contrast, between-winter site fidelity was not affected by age or sex, suggesting equal benefits from site fidelity. Juveniles probably gather information on resource abundance and distribution in their first winter, and thereby gain the same benefits as adults from returning the next winter.

Keywords

Between-winter site fidelity Dispersal Great tit Non-breeding season Temperature dependent movement 

Zusammenfassung

Kaltes wetter im winter erhöht die standorttreue sozial lebender sperlingsvögel

Standorttreue außerhalb der Brutperiode ist dann von Nutzen, wenn die Habitatqualität hoch und die Umgebungsbedingungen stabil sind. Bei in Gruppen lebenden Arten hängen Kosten und Nutzen von Standorttreue möglicherweise auch mit nicht-sozialen Faktoren (Wetter) und mit sozialen Umgebungsbedingungen (Dominanz-Hierarchien) zusammen. Man weiß aber nur wenig über Faktoren, die die Ortsveränderungen der Vögel außerhalb der Brutsaison beeinflussen. Wir untersuchten die Standorttreue der Kohlmeise (Parus major), einem Teilzieher in Nord-Finnland, sowohl während des Winters als auch zwischen Wintern. Hierfür sammelten wir an unterschiedlichen Standorten Wiederfang-Daten von Kohlmeisen und untersuchten diese auf mögliche Auswirkungen von Geschlecht, Alter, Saison, Temperatur und Tageslänge auf die Standorttreue. Die Ortsveränderungen waren während des Mittwinters geringer und nahmen während Kälteperioden ab. Dieses Verhaltensmuster steht wahrscheinlich in Zusammenhang mit Strategien zum Sparen von Energie und Vermeiden von Räubern während dieser schwierigen Jahreszeit, wenn der Energieverbrauch hoch ist und den Vögeln nur wenig Tageslicht zum Futtersammeln bleibt. Während des Winters zeigten Jungtiere weniger Standorttreue als ältere Tiere, ein Zusammenhang mit dem Geschlecht konnte jedoch nicht nachgewiesen werden. Diese Ergebnisse passen gut zu einer von Kohlmeisen bekannten altersabhängigen Dominanz-Struktur sowie Standort-spezifischen Dominanz. Sie können aber auch zu früheren Erfahrungen der Vögel in Beziehung gesetzt werden, da Jungtiere während ihres ersten Winters noch Informationen sammeln. Im Gegensatz dazu gab es in der Zeit zwischen Wintern keinerlei Einfluss vom Alter und Geschlecht der Vögel auf die Standorttreue. Jungtiere sammeln wahrscheinlich in ihrem ersten Winter Informationen zum Vorhandensein und der Verbreitung von Nahrungsquellen, was ihnen vermutlich die gleichen Vorteile schafft wie älteren Tieren, die im nächsten Winter wiederkehren.

Notes

Acknowledgements

We thank all the volunteers that helped during ringing and resighting, especially Ari-Pekka Auvinen, Toni Eskelin, Juhani Hopkins, Juha Kiiski, Reetta Kivioja, Satu Lampila, Laura-Lotta Muurinen, Petri Niemelä, Suvi Ponnikas and Elina Seppänen. We thank the local bird club (PPLY) and Jukka Piispanen for collaboration at the Hyry feeding site. We thank Esa Hohtola for valuable discussions, and Indrikis Krams and two anonymous referees for constructive comments on the manuscript. The study was funded by the Academy of Finland, Research Council for Biosciences and Environment (278759 to VMP, 258638, 128193 and 106811 to MO), the Finnish Cultural Foundation (VMP) and the Thule Institute (JK). Data collection in this study was done under licence from the Finnish Museum of Natural History and complies with the current national law.

Compliance with ethical standards

Funding

This study was funded by Academy of Finland (Grant numbers 278759, 258638, 128193 and 106811), the Finnish Cultural Foundation and the Thule Institute.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets during and/or analysed during the current study are available from the corresponding author on reasonable request.

Supplementary material

10336_2017_1505_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1302 kb)
10336_2017_1505_MOESM2_ESM.docx (26 kb)
Supplementary material 2 (DOCX 25 kb)

References

  1. Andreu J, Barba E (2006) Breeding dispersal of great tits Parus major in a homogeneous habitat: effects of sex, age, and mating status. Ardea 94:45–58Google Scholar
  2. Aplin LM, Farine DR, Morand-Ferron J, Cole EF, Cockburn A, Sheldon BC (2013) Individual personalities predict social behaviour in wild networks of great tits (Parus major). Ecol Lett 16:1365–1372CrossRefPubMedGoogle Scholar
  3. Bartón K (2016) Package MuMIn: multi-model inference for R, R Package version 1.15.6. Accessed 30 Oct 2016 at: http://CRAN.R-project.org/package=MuMIn
  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  5. Belda EJ, Barba E, Monrós JS (2007) Resident and transient dynamics, site fidelity and survival in wintering blackcaps Sylvia atricapilla: evidence from capture–recapture analyses. Ibis 149:396–404CrossRefGoogle Scholar
  6. Blackburn E, Cresswell W (2016) High winter site fidelity in a long-distance migrant: implications for wintering ecology and survival estimates. J Ornithol 157:93–108CrossRefGoogle Scholar
  7. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225CrossRefPubMedGoogle Scholar
  8. Broggi J, Hohtola E, Koivula K, Orell M, Thomson RL, Nilsson J-Å (2007) Sources of variation in winter basal metabolic rate in the great tit. Func Ecol 21:528–533CrossRefGoogle Scholar
  9. Broggi J, Orell M, Hohtola E, Nilsson J-Å (2004) Metabolic response to temperature variation in the great tit: an interpopulation comparison. J Anim Ecol 73:967–972CrossRefGoogle Scholar
  10. Báldi A, Csörgő T (1991) Effect of environmental factors on tits wintering in a Hungarian marshland. Ornis Hungarica 1:29–36Google Scholar
  11. Catry T, Alves JA, Gill JA, Gunnarsson TG, Granadeiro JP (2012) Sex promotes spatial and dietary segregation in a migratory shorebird during the non-breeding season. PLoS ONE 7:e33811CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cote J, Clobert J, Brodin T, Fogarty S, Sih A (2010) Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Phil Trans R Soc B 365:4065–4076CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cresswell W (1994) Flocking is an effective anti-predation strategy in redshanks, Tringa totanus. Anim Behav 47:433–442CrossRefGoogle Scholar
  14. Cresswell W (2014) Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510CrossRefGoogle Scholar
  15. De Laet J (1984) Site-related dominance in the great tit Parus major major. Ornis Scandinavica 15:73–78CrossRefGoogle Scholar
  16. De Laet J (1985) Dominance and anti-predator behaviour of great tits Parus major: a field study. Ibis 127:372–377CrossRefGoogle Scholar
  17. Dingemanse NJ, Bouwman KM, van de Pol M, van Overveld T, Patrick SC, Matthysen E, Quinn JL (2012) Variation in personality and behavioural plasticity across four populations of the Great tit Parus major. J Anim Ecol 81:116–126CrossRefPubMedGoogle Scholar
  18. Doligez B, Danchin E, Clobert J, Gustafsson L (1999) The use of conspecific reproductive success for breeding habitat selection in a non-colonial, hole-nesting species, the collared flycatcher. J Anim Ecol 68:1193–1206CrossRefGoogle Scholar
  19. Ekman J (1989) Ecology of non-breeding social systems of Parus. Wilson Bull 101:263–288Google Scholar
  20. Ekman J (1990) Alliances in winter flocks of willow tits—effects of rank on survival and reproductive success in male–female associations. Behav Ecol Sociobiol 26:239–245CrossRefGoogle Scholar
  21. Elgar MA (1989) Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev 64:13–33CrossRefPubMedGoogle Scholar
  22. Firth JA, Voelkl B, Farine DR, Sheldon BC (2015) Experimental evidence that social relationships determine individual foraging behavior. Curr Biol 25:3138–3143CrossRefPubMedGoogle Scholar
  23. Grist H, Daunt F, Wanless S, Nelson EJ, Harris MP, Newell M, Burthe S, Reid JM (2014) Site fidelity and individual variation in winter location in partially migratory European shags. PLoS ONE 9(6):e98562CrossRefPubMedPubMedCentralGoogle Scholar
  24. Grubb TC (1978) Weather-dependent foraging rates of wintering woodland birds. Auk 95:370–376Google Scholar
  25. Hogstad O (1989) Social organization and dominance behavior in some Parus species. Wilson Bull 101:254–262Google Scholar
  26. Hogstad O (2014) Ecology and behaviour of winter floaters in a subalpine population of willow tits, Poecile montanus. Ornis Fenn 91:29–38Google Scholar
  27. Hogstad O (2015a) Rank-related response in foraging site selection and vigilance behaviour of a small passerine to different winter weather conditions. Ornis Fenn 92:53–62Google Scholar
  28. Hogstad O (2015b) Social behaviour in the non-breeding season in great tits Parus major and Willow tits Poecile montanus: differences in juvenile birds’ route to territorial ownership, and pair-bond stability and mate protection in adults. Ornis Norvegica 38:1–8CrossRefGoogle Scholar
  29. Karvonen J, Orell M, Rytkönen S, Broggi J, Belda E (2012) Population dynamics of an expanding passerine at the distribution margin. J Avian Biol 43:102–108CrossRefGoogle Scholar
  30. Koivula K, Lahti K, Orell M, Rytkönen S (1993) Prior residency as a key determinant of social dominance in the willow tit (Parus montanus). Behav Ecol Sociobiol 33:283–287CrossRefGoogle Scholar
  31. Koivula K, Orell M, Lahti K (2002) Plastic daily fattening routines in willow tits. J Anim Ecol 71:816–823CrossRefGoogle Scholar
  32. Krams I (1998) Dominance-specific vigilance in the great tit. J Avian Biol 29:55–60CrossRefGoogle Scholar
  33. Krams I (2000) Length of feeding day and body weight of great tits in a single- and a two-predator environment. Behav Ecol Sociobiol 48:147–153CrossRefGoogle Scholar
  34. Krams I, Cirule D, Suraka V, Krama T, Rantala MJ, Ramey G (2010) Fattening strategies of wintering great tits support the optimal body mass hypothesis under conditions of extremely low ambient temperature. Func Ecol 24:172–177CrossRefGoogle Scholar
  35. Krams I, Cīrule D, Vrublevska J, Nord A, Rantala MJ, Krama T (2013) Nocturnal loss of body reserves reveals high survival risk for subordinate great tits wintering at extremely low ambient temperatures. Oecologia 172:339–346CrossRefPubMedGoogle Scholar
  36. Krištín A, Kaňuch P (2016) Stay or go? Strong winter feeding site fidelity in small woodland passerines revealed by a homing experiment. J Ornithol 158:53–61CrossRefGoogle Scholar
  37. Lahti K, Orell M, Rytkönen S, Koivula K (1998) Time and food dependence in willow tit winter survival. Ecology 79:2904–2916CrossRefGoogle Scholar
  38. Lange H, Leimar O (2004) Social stability and daily body mass gain in great tits. Behav Ecol 15:549–554CrossRefGoogle Scholar
  39. Lourenço PM, Alves JA, Reneerkens J, Loonstra AJ, Potts PM, Granadeiro JP, Catry T (2016) Influence of age and sex on winter site fidelity of sanderlings Calidris alba. PeerJ 4:e2517CrossRefPubMedPubMedCentralGoogle Scholar
  40. Masman D, Klaassen M (1987) Energy expenditure during free flight in trained and free-living Eurasian kestrels (Falco tinnunculus). Auk 104:603–616Google Scholar
  41. Mérő TO, Žuljević A (2014) Does the weather influence the autumn and winter movements of tits (Passeriformes: paridae) in urban areas? Acta Zool Bulg 66:505–510Google Scholar
  42. Newton I (2008) The migration ecology of birds. Academic Press, OxfordGoogle Scholar
  43. Newton I (2012) Obligate and facultative migration in birds: ecological aspects. J Ornithol 153:S171–S180CrossRefGoogle Scholar
  44. Nowakowski JK, Vähätalo AV (2003) Is the great tit Parus major an irruptive migrant in North-east Europe? Ardea 91:231–244Google Scholar
  45. Orell M (1989) Population fluctuations and survival of great tits Parus major dependent on food supplied by man in winter. Ibis 131:112–127CrossRefGoogle Scholar
  46. Orell M, Ojanen M (1983) Timing and length of the breeding season of the great tit Parus major and the willow tit P. montanus near Oulu. Northern Finland. Ardea 71:183–198Google Scholar
  47. Pakanen VM, Koivula K, Flodin L-Å, Grissot A, Hagstedt R, Larsson M, Pauliny A, Rönkä N, Blomqvist D (2017) Between-patch natal dispersal declines with increasing natal patch size and distance to other patches in the endangered southern Dunlin Calidris alpina schinzii. Ibis 159:611–622CrossRefGoogle Scholar
  48. Pakanen V-M, Lampila S, Arppe H, Valkama J (2015) Estimating sex specific apparent survival and dispersal of little ringed plovers (Charadrius dubius). Ornis Fenn 92:172–186Google Scholar
  49. Payevsky VA (2006) Mortality rate and population density regulation in the great tit, Parus major L.: a review. Russ J Ecol 37:180–187CrossRefGoogle Scholar
  50. Piper WH (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351CrossRefGoogle Scholar
  51. R Development Core Team (2014) R: A language and environment for statistical computing version 3.0.1. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/
  52. Robertson GJ, Cooke F (1999) Winter philopatry in migratory waterfowl. Auk 116:20–34CrossRefGoogle Scholar
  53. Sandell M, Smith HG (1991) Dominance, prior occupancy, and winter residency in the great tit (Parus major). Behav Ecol Sociobiol 29:147–152CrossRefGoogle Scholar
  54. Sandercock BK (2006) Estimation of demographic parameters from live-encounter data: a summary review. J Wildl Man 70:1504–1520CrossRefGoogle Scholar
  55. Sauter A, Korner-Nievergelt F, Jenni L (2010) Evidence of climate change effects on within-winter movements of European mallards Anas platyrhynchos. Ibis 152:600–609CrossRefGoogle Scholar
  56. Svensson L (1992) Identification guide to European passerines. British Trust for Ornithology, NorfolkGoogle Scholar
  57. Switzer PV (1993) Site fidelity in predictable and unpredictable habitats. Evol Ecol 7:533–555CrossRefGoogle Scholar
  58. Tatner P, Bryant DM (1986) Flight cost of a small passerine measured using doubly labeled water: implications for energetics studies. Auk 103:169–180Google Scholar
  59. Tolvanen J, Pakanen V-M, Valkama J, Tornberg R (2017) Apparent survival, territory turnover and site fidelity rates in northern goshawk Accipiter gentilis populations close to northern range limit. Bird Study 64:168–177CrossRefGoogle Scholar
  60. Van Balen JH (1980) Population fluctuations in the winter great tit and feeding conditions in winter. Ardea 68:143–164Google Scholar
  61. van Overveld T, Careau V, Adriaensen F, Matthysen E (2014) Seasonal- and sex-specific correlations between dispersal and exploratory behaviour in the great tit. Oecologia 174:109–120CrossRefPubMedGoogle Scholar
  62. Valkama J, Saurola P, Lehikoinen A, Lehikoinen E, Piha M, Sola P, Velmala W (2014) The finnish bird ringing atlas, vol II. Finnish Museum of Natural History and Ministry of Environment, HelsinkiGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  • Veli-Matti Pakanen
    • 1
  • Juhani Karvonen
    • 1
  • Jaana Mäkelä
    • 1
  • Jukka-Pekka Hietaniemi
    • 1
  • Tuomo Jaakkonen
    • 1
  • Elina Kaisanlahti
    • 1
  • Miila Kauppinen
    • 1
  • Kari Koivula
    • 1
  • Aappo Luukkonen
    • 1
  • Seppo Rytkönen
    • 1
  • Sami Timonen
    • 2
  • Jere Tolvanen
    • 1
  • Emma Vatka
    • 1
  • Markku Orell
    • 1
  1. 1.Department of Ecology and GeneticsUniversity of OuluOuluFinland
  2. 2.OuluFinland

Personalised recommendations