Journal of Ornithology

, Volume 158, Issue 4, pp 1013–1024 | Cite as

Urbanization, climate and ecological stress indicators in an endemic nectarivore, the Cape Sugarbird

  • B. MackayEmail author
  • A. T. K. Lee
  • P. Barnard
  • A. P. Møller
  • M. Brown
Original Article


Stress, as a temporary defense mechanism against specific stimuli, can place a bird in a state in which growth rates and resistance to diseases are diminished. The Cape Sugarbird Promerops cafer is an endemic specialist of the Cape Floristic Region (CFR) of South Africa that may be threatened by urbanization and climate change. Ecological stress due to urbanization and climate may result in disease and morphological abnormalities. We investigated the correlation between urbanization and climate and four ecological stress indicators (tarsal disease, fluctuating asymmetry, body condition and feather fault bars) in 1375 Cape Sugarbirds from 14 sites across the CFR. Sugarbirds at sites with warmer climates had a higher incidence of tarsal disease and fault bars. Birds closer to urban settlements had higher levels of fluctuating asymmetry and fault bars in feathers. There were no clear correlations among stress indicators. Cape Sugarbirds are subject to multiple stressors, and adequate monitoring of population health will require assessment of multiple rather than single stress responses.


Cape Floristic Region Fynbos Climate change Endemic birds Fault bars Fluctuating asymmetry Tarsal disease Urbanization 


Verstädterung, Klima und ökologische Stressanzeiger bei einem endemischen Nektarfresser, dem Kaphonigfresser

Stress, als vorübergehender Verteidigungsmechanismus gegen spezifische Reize, kann einen Vogel in einen Zustand versetzen, in dem Wachstumsraten und Resistenz gegen Krankheiten vermindert sind. Der Kaphonigfresser Promerops cafer ist ein endemischer Spezialist der Region Cape Floral (CFR) in Südafrika, der von Verstädterung und Klimaveränderung bedroht sein dürfte. Ökologischer Stress aufgrund von Verstädterung und Klima kann zu Krankheiten und morphologischen Anomalien führen. Wir haben den Zusammenhang zwischen Verstädterung und Klima und vier ökologischen Stressanzeigern (Tarsuskrankheit, fluktuierende Asymmetrie, Körperkondition und Hungerstreifen in den Federn) bei 1375 Kaphonigfressern an 14 Standorten quer durch die CFR untersucht. Kaphonigfresser an Standorten mit wärmerem Klima wiesen häufiger Tarsuskrankheiten und Hungerstreifen auf, Vögel aus der Nähe urbaner Siedlungen häufiger fluktuierende Asymmetrie und Hungerstreifen. Es gab keine deutlichen Korrelationen zwischen den Stressanzeigern. Kaphonigfresser sind vielfachen Stressfaktoren ausgesetzt, und um die Gesundheit von Populationen adäquat zu überwachen, ist es notwendig, vielfache und nicht nur einzelne Stressantworten zu bewerten.



We thank M. Ford, B. Gardner, F. Hannay, A. Heystek, the late G. Scholtz and G. Grobler for contributions of data and/or field help. We also thank the South African Weather Service’s P. Tharanga and South African National Biodiversity Institute’s S. Khatieb and F. Ranwashe for technical help. This study was supported by the African Climate and Development Initiative and the National Research Foundation of South Africa, Grant IFR2011041800032 to P.B.

Supplementary material

10336_2017_1460_MOESM1_ESM.docx (86 kb)
Supplementary material 1 (DOCX 85 kb)


  1. Atkinson CT, van Riper C (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In: Loye JE, Zuk M (eds) Bird–parasite interactions: ecology, evolution and behaviour. Oxford University Press, Oxford, pp 19–48Google Scholar
  2. Balbontín J, Møller AP, Hermosell IG, Marzal A, Reviriego M, de Lope F (2012) Lifetime individual plasticity in body condition in a migratory bird. Biol J Lin Soc 105:420–434CrossRefGoogle Scholar
  3. Barton, K., 2011. MuMIn: Multi-model inference. R package version 1.12.1. Vienna, Austria: R Foundation for Statistical Computing.
  4. Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version, 1Google Scholar
  5. Bortolotti GR, Russel D, Murza D, Murza GL (2002) Stress during feather development predicts fitness potential. J Anim Ecol 71:333–342CrossRefGoogle Scholar
  6. Bradley C, Altizer S (2006) Urbanisation and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102CrossRefPubMedGoogle Scholar
  7. Broekhuysen G (1959) The biology of the Cape sugarbird Promerops cafer (L.). Ostrich 30:180–221CrossRefGoogle Scholar
  8. Brown ME (1996) Assessing body condition in birds. Curr Ornithol 13:67–135CrossRefGoogle Scholar
  9. Calf KM, Downs CT, Cherry MI (2003) Territoriality and breeding success in the Cape Sugarbird (Promerops cafer). Emu 103:29–35CrossRefGoogle Scholar
  10. Cheke RA, Mann CF, Allen R (2001) Sunbirds: a guide to the sunbirds, flowerpeckers, spiderhunters and sugarbirds of the world. Yale University Press, New HavenGoogle Scholar
  11. Clarke GM (1995) Relationship between developmental stability and fitness: application for conservation biology. Conserv Biol 9:18–24CrossRefGoogle Scholar
  12. Collins BG, Rebelo T (1987) Pollination biology of the Proteaceae in Australia and southern Africa. Aust J Ecol 12:387–421CrossRefGoogle Scholar
  13. Dabert J, Mihalca AD, Sándor AD (2011) The first report of Knemidocoptes intermedius in naturally infected European birds. Parasitol Res 109:237–240CrossRefPubMedGoogle Scholar
  14. Dabert J, Dabert M, Gal AF (2013) Multidisciplinary analysis of Knemidocoptes jamaicensis parasitising the Common Chaffinch, Fringilla coelebs: proofs for a multispecies complex? Parasitol Res 112:2373–2380CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Beer S, Lockwood G, Raijmakers J, Raijmakers J, Scott W, Oschadleus H, Underhill L (2001) SAFRING bird ringing manual; ADU Guide 5. Avian Demography Unit, University of Cape Town, Cape TownGoogle Scholar
  16. De Coster G, Van Dongen S, Malaki P, Muchane M, Alca´ntara-Exposito A (2013) fluctuating asymmetry and environmental stress: understanding the role of trait history. PLoS One 8(3):1–8CrossRefGoogle Scholar
  17. Deerenberg C, Apanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc R Soc Lond Biol Sci 264:1021–1029CrossRefGoogle Scholar
  18. Doolen M (1999) Case presentation #1. Compend Contin Educ Pract Vet 71:695Google Scholar
  19. Evans KL, Gaston KJ, Sharp SP, McGowan A, Hatchwell BJ (2009a) The effect of urbanisation on avian morphology and latitudinal gradients in body size. Oikos 118:251–259CrossRefGoogle Scholar
  20. Evans KL, Gaston KJ, Sharp SP, McGowan A, Simeoni M (2009b) Effects of urbanisation on disease risk and age ratios in blackbird Turdus merula populations. Oikos 118:774–782CrossRefGoogle Scholar
  21. Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics, 4th edn. Longman, New YorkGoogle Scholar
  22. Fraser MW (1997) Cape Rockjumper, Chaetops frenatus. The atlas of southern African birds, vol. 2: Passerines. BirdLife South Africa, JohannesburgGoogle Scholar
  23. Gil D, Brumm H (eds) (2013) Avian urban ecology. Oxford University Press, OxfordGoogle Scholar
  24. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22(7):1–19CrossRefGoogle Scholar
  25. Green AJ (2001) Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82:1473–1483CrossRefGoogle Scholar
  26. Hamer SA, Lehrer E, Magle SB (2012) Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois. Zoonoses Public Health 59:355–364CrossRefPubMedGoogle Scholar
  27. Hannah L, Midgley G, Lovejoy T, Bond W, Bush M, Lovett J, Scott D, Woodward F (2002) Conservation of biodiversity in a changing climate. Conserv Biol 16:264–268CrossRefGoogle Scholar
  28. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  29. Hockey PA, Dean W, Ryan P (2005) Roberts’ birds of South Africa, 7th edn. John Voelcker Bird Book Fund, Cape TownGoogle Scholar
  30. Holmes PM, Rebelo AG, Dorse C, Wood J (2012) Can Cape Town’s unique biodiversity be saved? Balancing conservation imperatives and development needs. Ecol Soc 17(2):28CrossRefGoogle Scholar
  31. IPCC (2013) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  32. Laldaparsad S (2012) Urban and Rural Trends in South Africa. Statistics South Africa, PretoriaGoogle Scholar
  33. Latta SC (2003) Effects of scaley-leg mite infestations on body condition and site fidelity of migratory warblers in the Dominican Republic. Auk 120:730–743CrossRefGoogle Scholar
  34. Latta SC, O’Connor BM (2001) Patterns of Knemidokoptes jamaicensis (Acari: Knemidokoptidae) infestations among eight new avian hosts in the Dominican Republic. J Med Entomol 38:437–440CrossRefPubMedGoogle Scholar
  35. Lee ATK, Barnard P (2016) Endemic birds of the Fynbos biome: a conservation assessment and impacts of climate change. Bird Conserv Int 26(01):52–68CrossRefGoogle Scholar
  36. Lens L, Van Dongen S, Wilder CM, Brooks TM, Matthysen E (1999) Fluctuating asymmetry increases with habitat disturbance in seven bird species of a fragmented Afrotropical forest. Proc R Soc Lond Biol Sci 266:1241–1246CrossRefGoogle Scholar
  37. Liker A, Papp Z, Bókony V, Lendvai ÁZ (2008) Lean birds in the city: body size and condition of house sparrows along the urbanisation gradient. J Anim Ecol 77:789–795CrossRefPubMedGoogle Scholar
  38. Lombard AT, Cowling RM, Pressey RL, Mustart PJ (1997) Reserve selection in a species-rich and fragmented landscape on the Agulhas Plain, South Africa. Conserv Biol 11:1101–1116CrossRefGoogle Scholar
  39. Luo J, Fox B (1996) A Review of the mantel test in dietary studies: effect of sample size and inequality of sample sizes. Wildl Res 23:267–288CrossRefGoogle Scholar
  40. Machmer MM, Esselink H, Steeger C, Ydenberg RC (1992) The occurrence of fault bars in the plumage of nestling ospreys. Ardea 80:261–272Google Scholar
  41. Manly BJ (1986) Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res Popul Ecol 28:201–218CrossRefGoogle Scholar
  42. Martínez J, Pérez-Serrano J, Bernardina WE, Rodríguez-Caabeiro F (1999) Influence of parasitization by Trichinella spiralis on the levels of heat shock proteins in rat liver and muscle. Parasitology 118:201–209CrossRefPubMedGoogle Scholar
  43. Mennechez G, Clergeau P (2006) Effect of urbanisation on habitat generalists: starlings not so flexible? Acta Oecol 30:182–191CrossRefGoogle Scholar
  44. Merino S, Moreno J, Potti J, de León A, Rodríguez R (1998) Nest ectoparasites and maternal effort in pied flycatchers. Biol Conserv Fauna 102:200–205Google Scholar
  45. Midgley GF, Hannah L, Millar D, Thuiller W, Booth A (2003) Developing regional and species-level assessments of climate change impacts on bio-diversity in the Cape Floristic Region. Biol Cons 112:87–97CrossRefGoogle Scholar
  46. Midgley GF, Chapman RA, Hewitson B, Johnston P, de Wit M, Ziervogel G, Mukheibir P, van Niekerk L, Tadross M, van Wilgen BW, Kgope B, Morant PD, Theron A, Scholes R.J, Forsyth GG (2005). A status quo, vulnerability and adaptation assessment of the physical and socio-economic effects of climate change in the western cape. Report to the Western Cape Government, Cape Town, South Africa. CSIR Report No. ENV-S-C 2005-073, Stellenbosch, South AfricaGoogle Scholar
  47. Møller AP (1999) Asymmetry as a predictor of growth, fecundity and survival. Ecol Lett 2:149–156CrossRefGoogle Scholar
  48. Møller AP, Swaddle JP (1997) Asymmetry, developmental stability, and evolution. Oxford University Press, New YorkGoogle Scholar
  49. Møller AP, Erritzøe J, Nielsen JT (2009) Frequency of fault bars in feathers of birds and susceptibility to predation. Biol J Lin Soc 97:334–345CrossRefGoogle Scholar
  50. Munday TL (2006) The search for the reason(s) causing feet abnormalities in the Cape wagtail (Motacilla capensis). Masters Dissertation. University of Johannesburg, Johannesburg, South AfricaGoogle Scholar
  51. Murphy ME, Miller BT, King JR (1989) A structural comparison of fault bars with feather defects known to be nutritionally induced. Can J Zool 67:1311–1317CrossRefGoogle Scholar
  52. NASA (2000) SRTM 90 m digital elevation data from the CGIAR-CSI consortium for spatial information. CGIAR consortium for spatial information (CGIAR-CSI).
  53. Norberg RÅ (1981) Temporary weight decrease in breeding birds may result in more fledged young. Am Nat 118:818–850CrossRefGoogle Scholar
  54. Palmer AR, Strobeck C (2003) Fluctuating asymmetry analyses revisited. In: Markow TA (ed) Developmental instability: causes and consequences. Oxford University Press, New YorkGoogle Scholar
  55. Parsons PA (1992) Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68:361–364CrossRefPubMedGoogle Scholar
  56. Partecke J, Schwabl I, Gwinner E (2006) Stress and the city: urbanisation and its effects on the stress physiology in European blackbirds. Ecology 87:1945–1952CrossRefPubMedGoogle Scholar
  57. Pauw A, Louw K (2012) Urbanisation drives a reduction in functional diversity in a guild of nectar-feeding birds. Ecol Soc 17:27CrossRefGoogle Scholar
  58. Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891CrossRefGoogle Scholar
  59. Pence DB, Cole RA, Brugger KE, Fischer JR (1999) Epizootic podoknemidokoptiasis in American robins. J Wildl Dis 35:1–7CrossRefPubMedGoogle Scholar
  60. Pierotti R, Annett C (2001) The ecology of western gulls in habitats varying in degree of urban influence. Avian Ecology and Conservation in an Urbanizing World. Kluwer Academic Press, DordrechtGoogle Scholar
  61. Procter H, Owens I (2000) Mites and birds: diversity, parasitism and coevolution. Trends Ecol Evol 15:358–364CrossRefGoogle Scholar
  62. Rebelo AG, Siegfried WR (1990) Protection of fynbos vegetation: ideal and real-world options. Biol Cons 54:17–34CrossRefGoogle Scholar
  63. Revelle W (2014) Psych: procedures for psychological, psychometric, and personality research. Northwestern University, EvanstonGoogle Scholar
  64. Richner H (1989) Habitat-specific growth and fitness in carrion crows (Corvus corone corone). J Anim Ecol 58:427–440CrossRefGoogle Scholar
  65. Rinehart JP, Denlinger DL, Rivers DB (2002) Upregulation of transcripts encoding select heat shock proteins in the flesh fly Sarcophaga crassipalpis in response to venom from the ectoparasitoid wasp Nasonia vitripennis. J Invertebr Pathol 79:62–63CrossRefPubMedGoogle Scholar
  66. Ritchie BW, Harrison GJ, Harrison LR (1994) Avian medicine: principles and application. Wingers, Lake WorthGoogle Scholar
  67. Rouget M, Richardson DM, Cowling RM, Lloyd JW, Lombard AT (2003) Current patterns of habitat transformation and future threats to biodiversity in terrestrial ecosystems of the Cape Floristic Region, South Africa. Biol Cons 112:63–85CrossRefGoogle Scholar
  68. Ruiz G, Rosenmann M, Novoa FF, Sabat P (2002) Hematological parameters and stress index in rufous-collared sparrows dwelling in urban environments. Condor 104:162–166CrossRefGoogle Scholar
  69. Saino N, Calza S, Møller AP (1997) Immunocompetence of nestling barn swallows in relation to brood size and parental effort. J Anim Ecol 66:827–836CrossRefGoogle Scholar
  70. Schmidt GD, Roberts LS (2000) Foundations of parasitology, 6th edn. McGraw Hill, New YorkGoogle Scholar
  71. Seiler HW, Fraser MW (1985) Ageing and sexing guide Cape Sugarbirds. Safring News 14:91–92Google Scholar
  72. Shochat E, Lerman C, Fernández-Juricic E (2010) Birds in urban ecosystems: population dynamics, community structure, biodiversity, and conservation. Agron Monogr 55:75–86Google Scholar
  73. Siegel HS (1980) Physiological stress in birds. Bioscience 30:529–534CrossRefGoogle Scholar
  74. Simmons RE, Barnard P, Dean WRJ, Midgley GF, Thuiller W, Hughes G (2004) Climate change and birds: perspectives and prospects from southern Africa. Ostrich-J Afr Ornithol 75:295–308CrossRefGoogle Scholar
  75. Skead C (1967) The sunbirds of Southern Africa, also the sugarbirds, the white-eyes and the spotted creeper. Trustees of the South African Ornithological Society, PretoriaGoogle Scholar
  76. Slagsvold T (1982) Sex, size, and natural selection in the hooded crow Corvus corone cornix. Ornis Scandinavica 13:165–175CrossRefGoogle Scholar
  77. StatsSA (Statistics South Africa) (2011) Census 2011: interactive data in supercross. STATSSA, PretoriaGoogle Scholar
  78. Steyn L, Maina JN (2015) Comparison of the numbers of free (surface) macrophages in the respiratory systems of three species of birds in an urban and a rural area of South Africa. J Ornithol 156:1085–1093CrossRefGoogle Scholar
  79. Swaddle JS, Witter MS (1994) Food, feathers and fluctuating asymmetries. Proc R Soc Lond Biol Sci 255:147–152CrossRefGoogle Scholar
  80. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3- 900051-07-0.
  81. Van Riper C (1991) Parasite communities in wet and dry forest subpopulations of the Hawaii Common Amakihi. In: Loye JE, Zuk M (eds) Bird–parasite interactions: ecology, evolution, and behaviour. Oxford University Press, Oxford, pp 140–153Google Scholar
  82. Wilson AM, Latimer AM, Silander JA Jr, Gelfand AE, De Klerk H (2010) A hierarchical Bayesian model of wildfire in a Mediterranean biodiversity hotspot: implications of weather variability and global circulation. Ecol Model 221:106–112CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Climate Change BioadaptationSouth African National Biodiversity InstituteCape TownSouth Africa
  2. 2.Percy FitzPatrick Institute of African Ornithology, DST–NRF Centre of ExcellenceUniversity of Cape TownRondeboschSouth Africa
  3. 3.Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTechUniversité Paris-SaclayOrsay CedexFrance
  4. 4.School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  5. 5.Nature’s Valley TrustThe CragsSouth Africa

Personalised recommendations