Abstract
A modelling approach is presented for describing the unique flight mode of aerial roosting Swifts. With reference to measurement results, a mathematical model of this flight mode is developed that describes the energy state of the bird and, in an expanded version, allows for unsteady motion characteristics caused by brief force impulses associated with short flapping and gliding phases. Because of these unsteady effects, the flight mode is here termed ‘dynamic flap-gliding flight’. Results are presented on the mechanical power output, which is the relevant performance quantity for the energy cost of aerial roosting Swifts. It is shown that dynamic flap-gliding flight yields a significant energy saving when compared with the best continuous flapping flight. The flapping ratio has a considerable effect, with the result that the energy saving is the higher the smaller the flapping ratio. Furthermore, the duration of the flap-gliding cycle, which is varied by aerial roosting Swifts in a wide range, has only a minor effect. Introducing an appropriate non-dimensionalization of the governing relations, results which are less sensitive to uncertainties in model parameters are obtained.
Zusammenfassung
Energieeinsparung in der Luft nächtigender Mauersegler durch dynamischen Schlag-Gleit-Flug Ein Modellierungsansatz zur Beschreibung der Flugmethode in der Luft nächtigender Mauersegler wird vorgelegt. Mit Bezug zu Messergebnissen wird ein mathematisches Modell dieser Flugmethode entwickelt, das den Energiezustand des Vogels beschreibt und in einer erweiterten Version auch instationäre Bewegungselemente erfasst, die durch kurze Kraftimpulse in der Schlag- und Gleitphase entstehen. Aufgrund der instationären Effekte wird die Flugmethode hier als dynamischer Schlag-Gleit-Flug bezeichnet. Ergebnisse werden für die aufzubringende mechanische Leistung vorgelegt, die die relevante Größe für den Energieaufwand in der Luft nächtigender Mauersegler ist. Es wird gezeigt, dass der dynamische Schlag-Gleit-Flug eine signifikante Einsparung des Energieaufwandes im Vergleich zum bestmöglichen kontinuierlichem Schlagflug ergibt. Das Schlagverhältnis übt einen erheblichen Einfluss aus, wobei die Energieeinsparung umso höher ist, je kleiner das Schlagverhältnis gemacht werden kann. Weiter wird gezeigt, dass die Zykluszeit beim Schlag-Gleit-Flug, die von den in der Luft nächtigenden Mauerseglern in einem weiten Bereich variiert wird, nur einen kleinen Einfluss hat. Durch eine geeignete Dimensionslosmachung der bestimmenden mathematischen Beziehungen werden Ergebnisse erzielt, die weniger empfindlich gegenüber Unsicherheiten in den Modellparametern sind.

Picture detail reproduced from Bruderer and Weitnauer (1972)






Similar content being viewed by others
References
Bäckman J, Alerstam T (2001) Confronting the winds: orientation and flight behaviour of the roosting Swift, Apus apus. Proc R Soc Lond B Biol Sci 268:1081–1087
Bäckman J, Alerstam T (2002) Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the Swift Apus apus. J Exp Biol 205:905–910
Bruderer B, Weitnauer E (1972) Radarbeobachtungen über Zug und Nachtflüge des Mauerseglers (Apus apus). Rev Suisse Zool 79:1190–1200
Brüning G, Hafer X, Sachs G (2006) Flugleistungen. Springer, Berlin Heidelberg Bew York
Dokter AM, Åkesson S, Beekhuis H, Bouten W, Buurma L, van Gasteren H, Holleman I (2013) Twilight ascents by common Swifts, Apus apus, at dawn and dusk: acquisition of orientation cues? Anim Behav 85:545–552
Hedenström A, Norevik G, Warfvinge K, Andersson A, Bäckman J, Åkesson S (2016) Annual 10-month aerial life phase in the common Swift Apus apus. Curr Biol 26(22):3066–3070
Heerenbrink MK, Johansson LC, Hedenström A (2015) Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight. Proc R Soc A 471:20140952. doi:10.1098/rspa.2014.0952
Henningsson P, Hedenström A (2011) Aerodynamics of gliding flight in common Swifts. J Exp Biol 214:382–393
Henningsson P, Karlsson H, Bäckman J, Alerstam T, Hedenström A (2009) Flight speeds of Swifts (Apus apus): seasonal differences smaller than expected. Proc R Soc B 276:2395–2401
Henningsson P, Johansson LC, Hedenström A (2010) How swift are Swifts Apus apus? J Avian Biol 41:94–98
Henningsson P, Hedenström A, Bomphrey RJ (2014) Efficiency of lift production in flapping and gliding flight of Swifts. PLoS One 9(2):e90170. doi:10.1371/journal.pone.0090170
Karlsson H, Henningsson P, Bäckman J, Hedenström A, Alerstam T (2010) Compensation for wind drift by migrating Swifts. Anim Behav 80:399–404
Lentink D, Müller UK, Stamhuis EJ, de Kat R, van Gestel W, Veldhuis LLM, Henningsson P, Hedenström A, Videler JJ, van Leeuwen JL (2007) How Swifts control their glide performance with morphing wings. Nature 446:1082–1085
Liechti F, Witvliet W, Weber R, Bächler E (2013) First evidence of a 200-day non-stop flight. Nat Commun 4:2554. doi:10.1038/ncomms3554
Muijres FT, Spedding GR, Winter Y, Hedenström A (2011) Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements. Exp Fluids 51:511–525
Muijres FT, Henningsson P, Stuiver M, Hedenström A (2012) Aerodynamic flight performance in flap-gliding birds and bats. J Theor Biol 306:120–128
Norberg UM (1990) Vertebrate flight. Springer, Berlin
Oehme H (1968) Der Flug des Mauerseglers (Apus apus). Biol Zentralbl 87(3):287–311
Pennycuick CJ (2008). Modelling the flying bird. Elsevier, Academic Press, Burlington, MA, USA
Rayner JMV (1999) Estimating power curves of flying vertebrates. J Exp Biol 202:3449–3461
Rayner JMV, Viscardi PW, Ward S, Speakman JR (2001) Aerodynamics and energetics of intermittent flight in birds. Am Zool 41:188–204
Sachs G (2015a) Aerodynamic cost of flapping. J Bionic Eng 12(2015):61–69
Sachs G (2015b) New model of flap-gliding flight. J Theor Biol 377:110–116
Tarburton MK, Kaiser E (2001) Do fledgling and pre-breeding common Swifts Apus apus take part in aerial roosting? An answer from a radiotracking experiment. Ibis 143:255–263
Tobalske BW (2000) Biomechanics and physiology of gait selection in flying birds. Physiol Biochem Zool 73:736–750
Tobalske BW (2010) Hovering and intermittent flight in birds. Bioinspiration Biomim 5(2010):045004
Videler JJ, Stamhuis EJ, Povel GDE (2004) Leading-edge vortex lifts Swifts. Science 306:1960–1962
Weitnauer E (2005) Mein Vogel—aus dem Leben des Mauerseglers Apus apus. Basellandschaftlicher Natur- und Vogelschutzverband, Liestal
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Hedenström.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sachs, G. Energy saving of aerial roosting Swifts by dynamic flap-gliding flight. J Ornithol 158, 943–953 (2017). https://doi.org/10.1007/s10336-017-1447-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10336-017-1447-6



