Journal of Ornithology

, Volume 158, Issue 2, pp 395–405 | Cite as

Integrating genetic and stable isotope analyses to infer the population structure of the White-winged Snowfinch Montifringilla nivalis in Western Europe

  • Jaime Resano-Mayor
  • Ángel Fernández-Martín
  • Sergio Hernández-Gómez
  • Ignasi Toranzo
  • Antonio España
  • Juan Antonio Gil
  • Miguel de Gabriel
  • Isabel Roa-Álvarez
  • Eliseo Strinella
  • Keith A. Hobson
  • Gerald Heckel
  • Raphaël Arlettaz
Original Article

Abstract

The population structure and seasonal movements of alpine birds in Europe are still largely unknown. Species living in high mountains now face acute risks of habitat loss, range contractions and local extinction due to current and projected climate change. Therefore, a better understanding of the spatial structuring and exchange among populations of European mountain birds is important from both ecological and conservation points of view. The White-winged Snowfinch Montifringilla nivalis is one of the most characteristic passerines of alpine habitats in Europe. Despite the fact that its breeding nuclei are relatively well defined, we still know little about the species’ population structure and movements in Western Europe. By analysing two mitochondrial loci (cytochrome b and the control region) and stable isotopes of hydrogen (δ2H), we assessed to what extent breeding populations of White-winged Snowfinches in the Cantabrian Mountains (CM), the Pyrenees and the Alps, and also a wintering population in the Eastern Pyrenees, function as a metapopulation. We first show the phylogenetic relationships of the White-winged Snowfinch (Montifringilla nivalis subsp. nivalis) within the Snowfinch complex. When assessing the population structure in Western Europe, most mitochondrial haplotypes were present in all breeding populations, but one was only found in the CM where it predominated. The most widespread haplotypes at the breeding grounds were found in the majority of the wintering individuals, but none of them showed the haplotype specific to the CM. We did not find differences in δ2H for the primary feathers among breeding populations, but rectrices of individuals wintering in the Pyrenees had considerably lower δ2H values: isotopic analysis could thus be useful to assign wintering birds to their Alpine breeding grounds. Further studies combining ringing and the analyses of intrinsic markers are an essential step in better appraising the species’ metapopulation dynamics and guiding conservation.

Keywords

Alpine environments Bird ringing Intrinsic markers Migration Population dynamics 

Zusammenfassung

Die Populationsstruktur des SchneesperlingsMontifringilla nivalisin Westeuropa auf Grundlage von genetischen und IsotopenanalysenDie Populationsstrukturen und saisonalen Wanderungen alpiner Vögel in Europa sind noch immer weitgehend unbekannt. Hochalpine Arten sehen sich akuten Risiken von Habitatverlust, Lebensraumschwund und lokaler Extinktion durch den gegenwärtigen und erwarteten Klimawandel gegenüber. Deswegen ist ein besseres Verständnis der räumlichen Struktur und des Austauschs zwischen Populationen europäischer alpiner Vögel sowohl unter ökologischen als auch naturschützerischen Gesichtspunkten wichtig. Der Schneesperling oder Schneefink Montifringilla nivalis ist ein Charaktervogel alpiner Habitate in Europa. Obwohl seine Brutvorkommen relativ gut bekannt sind, wissen wir wenig über die Populationsstruktur und Wanderungen der Art in Westeuropa. In dieser Arbeit untersuchten wir mittels zweier mitochondrialer Loci (Cytochrom B und Kontrollregion) und Wasserstoffisotopen (δ2H) inwiefern Brutpopulationen in den Pyrenäen, Alpen, Kantabrischen Gebirge, und eine Winterpopulation in den östlichen Pyrenäen als Metapopulation fungieren. Wir charakterisierten zuerst die phylogenetischen Beziehungen der Unterart nivalis innerhalb des Artenkomplexes. Bei der Untersuchung der Populationsstruktur in Westeuropa wurden die meisten mitochondrialen Haplotypen in allen Brutpopulationen nachgewiesen. Lediglich im Kantabrischen Gebirge dominierte ein privater Haplotyp. Dieser wurde auch nicht in den überwinternden Vögeln gefunden, bei denen die sonst am weitesten verbreiteten Haplotypen überwiegten. Wir fanden keine Unterschiede im δ2H von Handschwingen zwischen den Brutgebieten, allerdings hatten in den Pyrenäen überwinternde Individuen deutlich niedrigere δ2H Werte in den Schwanzfedern. Dies deutet darauf hin, dass Isotopenanalysen es ermöglichen könnten überwinternde Tiere ihren alpinen Brutgebieten zuzuordnen. Bei zukünftigen Studien wäre insbesondere die kombinierte Analyse von Ringfunden und intrinsischen Markern ein wichtiger Schritt, um die Metapopulationsdynamik der Art besser zu verstehen und Hinweise für ihren Schutz zu liefern.

References

  1. Antor RJ (1995) The importance of arthropod fallout on snow patches for the foraging of high-alpine birds. J Avian Biol 26:81–85CrossRefGoogle Scholar
  2. Arizaga J, Alonso D, Hobson KA (2014) Disentangling the origin of crossbills using morphology and isotopic (δ2H) characters. Are southern European crossbills restricted to population-specific key resources? J Ornithol 155:1027–1035CrossRefGoogle Scholar
  3. Baillie SR (2001) The contribution of ringing to the conservation and management of bird populations: a review. Ardea 89:167–184Google Scholar
  4. Bairlein F (2001) Results of bird ringing in the study of migration routes. Ardea 89:7–19Google Scholar
  5. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Climate variability and change in high elevation regions: past, present and future. Springer, the Netherlands, pp 5–31CrossRefGoogle Scholar
  6. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348CrossRefPubMedGoogle Scholar
  7. Chamberlain D, Arlettaz R, Caprio E, Maggini R, Pedrini P, Rolando A, Zbinden N (2012) The altitudinal frontier in avian climate impact research. Ibis 154:205–209CrossRefGoogle Scholar
  8. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New YorkGoogle Scholar
  9. Coiffait L, Redfern CP, Bevan RM, Newton J, Wolff K (2009) The use of intrinsic markers to study bird migration. Ringing Migr 24:169–174CrossRefGoogle Scholar
  10. Cramp S, Perrins CM (1994) The birds of the Western Palearctic, vol VIII. Oxford University Press, OxfordGoogle Scholar
  11. Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CrossRefPubMedGoogle Scholar
  12. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:772CrossRefGoogle Scholar
  13. del Hoyo J, Elliott A, Christie DA (2009) Handbook of the birds of the world. Bush-shrikes to Old World Sparrows, vol 14. Lynx Edicions, BarcelonaGoogle Scholar
  14. Dong L, Heckel G, Liang W, Zhang Y (2013) Phylogeography of Silver Pheasant (Lophura nycthemera L.) across China: aggregate effects of refugia, introgression, and riverine barriers. Mol Ecol 22:3376–3390CrossRefPubMedGoogle Scholar
  15. Duriez O, Sachet JM, Ménoni E, Pidancier N, Miquel C, Taberlet P (2007) Phylogeography of the Capercaillie in Eurasia: what is the conservation status in the Pyrenees and Cantabrian Mounts? Conserv Genet 8:513–526CrossRefGoogle Scholar
  16. Ewens WJ (2004) Mathematical population genetics. 1. Theoretical introduction, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  17. Flaim G, Camin F, Tonon A, Obertegger U (2013) Stable isotopes of lakes and precipitation along an altitudinal gradient in the Eastern Alps. Biogeochemistry 116:187–198CrossRefGoogle Scholar
  18. Flousek J, Telenský T, Hanzelka J, Reif J (2015) Population trends of Central European montane birds provide evidence for adverse impacts of climate change on high-altitude species. PLoS One 10:e0139465CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gebauer A, Kaiser M (1994) Biologie und Verhalten zentralasiatischer Schneefinken (Montifringilla) und Erdsperlinge (Pyrgilauda). J Ornithol 135:55–71CrossRefGoogle Scholar
  20. Grangé JL (2008) Biologie de reproduction de la Niverolle Alpine Montifringilla nivalis dans les Pyrénées occidentales Françaises. Nos Oiseaux 55:67–82Google Scholar
  21. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  23. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467CrossRefPubMedGoogle Scholar
  24. Heiniger PH (1991) Anpassungsstrategien des Schneefinken Montifringilla nivalis an die extremen Umweltbedingungen des Hochgebirges. Orn Beob 88:193–207Google Scholar
  25. Hobson KA (2005) Using stable isotopes to trace long-distance dispersal in birds and other taxa. Divers Distrib 11:157–164CrossRefGoogle Scholar
  26. Hobson KA (2008) Applying isotopic methods to tracking animal movements. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration using stable isotopes. Academic, London, pp 45–78CrossRefGoogle Scholar
  27. Hobson KA (2011) Isotopic ornithology: a perspective. J Ornithol 152:49–66CrossRefGoogle Scholar
  28. Hobson KA, Wassenaar LI (2008) Tracking animal migration using stable isotopes. In: Handbook of terrestrial ecology series, vol 2. Academic Press/Elsevier, Amsterdam, p 188Google Scholar
  29. Hobson KA, Wassenaar LI, Milá B, Lovette I, Dingle C, Smith TB (2003) Stable isotopes as indicators of altitudinal distributions and movements in an Ecuadorean Hummingbird community. Oecologia 136:302–308CrossRefPubMedGoogle Scholar
  30. Hobson KA, Bowen GJ, Wassenaar LI, Ferrand Y, Lormee H (2004) Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141:477–488CrossRefPubMedGoogle Scholar
  31. Huber SK, De Leon LF, Hendry AP, Bermingham E, Podos J (2007) Reproductive isolation of sympatric morphs in a population of Darwin’s Finches. Proc R Soc Lond B Biol Sci 274:1709–1714CrossRefGoogle Scholar
  32. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Durham University, RSPB and Lynx, BarcelonaGoogle Scholar
  33. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461CrossRefGoogle Scholar
  34. Jenni L, Winkler R (1994) Moult and aging in European passerines. Academic Press, LondonGoogle Scholar
  35. Korner-Nievergelt F, Liechti F, Thorup K (2014) A bird distribution model for ring recovery data: where do the European robins go? Ecol Evol 4:720–731CrossRefPubMedPubMedCentralGoogle Scholar
  36. La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc Lond B Biol Sci 277:3401–3410CrossRefGoogle Scholar
  37. Lehikoinen A, Green M, Husby M, Kålås JA, Lindström Å (2014) Common montane birds are declining in northern Europe. J Avian Biol 45:3–14CrossRefGoogle Scholar
  38. Leigh JW, Bryant D (2015) POP ART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116CrossRefGoogle Scholar
  39. Liu Y, Keller I, Heckel G (2011) Range-wide genetic population structure of common pochard (Aythya ferina): a potentially important vector of highly pathogenic avian influenza viruses. Ecol Evol 1:529–545CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu Y, Keller I, Heckel G (2012) Breeding site fidelity and winter admixture in a long-distance migrant, the Tufted Duck (Aythya fuligula). Heredity 109:108–116CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marchant J (2002) Learning about bird movements: methods of study. In: Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, Baillie SR (eds) The migration atlas: movements of the birds of Britain and Ireland. T. & A.D. Poyser, London, pp 1–13Google Scholar
  42. Marshall HD, Baker AJ (1997) Structural conservation and variation in the mitochondrial control region of Fringilline Finches (Fringilla spp.) and the Greenfinch (Carduelis chloris). Mol Biol Evol 14:173–184CrossRefPubMedGoogle Scholar
  43. Martin JF, Novoa C, Blanc-Manel S, Taberlet P (2003) Les populations de Perdrix Grises des Pyrénées (Perdix perdix hispaniensis) ont-elles subi une introgression génétique à partir d’individus d’élevage? Analyse du polymorphisme de l’ADN mitochondrial. Les actes du BRG, Bureau des Ressources Génétiques, pp 115–126Google Scholar
  44. Norris DR, Wunder MB, Boulet M (2006) Perspectives on migratory connectivity. Ornithol Monogr 61:79–88CrossRefGoogle Scholar
  45. Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15CrossRefGoogle Scholar
  46. Qu YH, Lei FM, Yin ZH (2004) On the taxonomic status on Onychostruthus taczanowskii. Acta Zootax Sin. 29:1–10Google Scholar
  47. Qu Y, Ericson PGP, Lei F, Gebauer A, Kaiser M, Helbig AJ (2006) Molecular phylogenetic relationship of Snow Finch complex (genera Montifringilla, Pyrgilauda, and Onychostruthus) from the Tibetan plateau. Mol Phylogenet Evol 40:218–226CrossRefPubMedGoogle Scholar
  48. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  49. Rousset F (2004) Genetic structure and selection in subdivided populations. Monographs in Population Biology. Princeton University Press, PrincetonGoogle Scholar
  50. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263CrossRefPubMedGoogle Scholar
  51. Rubenstein DR, Chamberlain CP, Holmes RT, Ayres MP, Waldbauer JR, Graves GR, Tuross NC (2002) Linking breeding and wintering ranges of a migratory songbird using stable isotopes. Science 295:1062–1065CrossRefPubMedGoogle Scholar
  52. Santamaría L, Mendez PF (2012) Evolution in biodiversity policy—current gaps and future needs. Evol Appl 5:202–218CrossRefPubMedPubMedCentralGoogle Scholar
  53. Segelbacher G, Piertney S (2007) Phylogeography of the European Capercaillie (Tetrao urogallus) and its implications for conservation. J Ornithol 148:269–274CrossRefGoogle Scholar
  54. Strinella E, Ricci F, Vianale P (2007) Uso dell’habitat nel Fringuello Alpino Montifringilla nivalis in periodo riproduttivo in un’area sub-antropizzata: Campo Imperatore (Gran Sasso-Abruzzo). Alula 14:107–114Google Scholar
  55. Strinella E, Vianale P, Pirrello S, Artese C (2011a) Biologia riproduttiva del Fringuello Alpino Montifringilla nivalis a Campo Imperatore nel parco nazionale del Gran Sasso e Monti della Laga (AQ). Alula 18:95–100Google Scholar
  56. Strinella E, Catoni C, De Faveri A, Artese C (2011b) Biometrics, sexing and moulting of Snow Finch Montifringilla nivalis in Central Italy. Ring Migr 26:1–8CrossRefGoogle Scholar
  57. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39:211–217CrossRefPubMedGoogle Scholar
  60. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83CrossRefGoogle Scholar
  61. Weir JT, Schluter D (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574–1576CrossRefPubMedGoogle Scholar
  62. Wennerberg L (2001) Breeding origin and migration pattern of dunlin (Calidris alpina) revealed by mitochondrial DNA analysis. Mol Ecol 10:1111–1120CrossRefPubMedGoogle Scholar
  63. Wennerberg L, Klaassen M, Lindström Å (2002) Geographical variation and population structure in the White-rumped Sandpiper Calidris fuscicollis as shown by morphology, mitochondrial DNA and carbon isotope ratios. Oecologia 131:380–390CrossRefGoogle Scholar
  64. Winkler R, Winkler A (1985) Zur Jugendmauser handaufgezogener Schneefinken Montifringilla nivalis. Orn Beob 82:55–66Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  • Jaime Resano-Mayor
    • 1
    • 2
  • Ángel Fernández-Martín
    • 2
  • Sergio Hernández-Gómez
    • 2
  • Ignasi Toranzo
    • 2
  • Antonio España
    • 2
  • Juan Antonio Gil
    • 3
    • 4
  • Miguel de Gabriel
    • 5
  • Isabel Roa-Álvarez
    • 5
  • Eliseo Strinella
    • 6
  • Keith A. Hobson
    • 7
  • Gerald Heckel
    • 8
    • 9
  • Raphaël Arlettaz
    • 1
    • 10
  1. 1.Division of Conservation Biology, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  2. 2.Grup d’anellament PARUSLliçà d’Amunt, BarcelonaSpain
  3. 3.Fundación para la Conservación del QuebrantahuesosZaragozaSpain
  4. 4.Estación Zaragoza-DeliciasGrupo Aragón de Anillamiento Científico de AvesZaragozaSpain
  5. 5.Grupo Ibérico de AnillamientoLeónSpain
  6. 6.Department for BiodiversityState Forestry AgencyL’AquilaItaly
  7. 7.Wildlife and Landscape Research DivisionEnvironment CanadaSaskatoonCanada
  8. 8.Institute of Ecology and Evolution, Computational and Molecular Population GeneticsUniversity of BernBernSwitzerland
  9. 9.Swiss Institute of BioinformaticsLausanneSwitzerland
  10. 10.Valais Field StationSwiss Ornithological InstituteSionSwitzerland

Personalised recommendations