Journal of Ornithology

, Volume 158, Issue 2, pp 593–601 | Cite as

A field test of the effects of body composition analysis by quantitative magnetic resonance on songbird stopover behaviour

  • Lisa V. Kennedy
  • Yolanda E. Morbey
  • Stuart A. Mackenzie
  • Philip D. Taylor
  • Christopher G. Guglielmo
Original Article

Abstract

Quantitative magnetic resonance (QMR) is a non-invasive technology used to measure body composition. It has great potential to advance the study of energetics and fuel use of migratory birds. However, there is concern that exposure to a strong magnetic field during QMR analysis could affect magnetite-based geomagnetic senses of migratory songbirds which may be important for orientation and navigation. We used radiotelemetry and capture-mark-recapture analysis to test for effects of QMR analysis on stopover duration and departure orientation. There was no evidence from radiotelemetry data that QMR analysis influenced minimum stopover duration or departure orientation of Black-throated Blue Warblers (Setophaga caerulescens) in the spring or fall, or Magnolia Warblers (Setophaga magnolia) in the spring. Capture-mark-recapture analysis of White-throated Sparrow (Zonotrichia albicollis) ringing data showed no effects of QMR on transiency or recapture probability, but a slight increase in estimated stopover duration (days) in the fall. Our study provides evidence that stopover duration and departure orientation of migrating songbirds are not significantly affected by QMR analysis with the exception of fall stopover duration estimates from mark-recapture models, and that QMR is a safe technique for the study of birds in the field.

Keywords

Migration Orientation Radiotelemetry Capture-mark-recapture White-throated Sparrow Zonotrichia albicollis 

Zusammenfassung

Ein Freilandtest zur Prüfung möglicher Auswirkungen der Quantitative Magnetresonanztomographie (QMRT) zu Bestimmung der Körperzusammensetzung auf das Verhalten von Zugvögeln während ihrer Rast

Quantitative Magnetresonanztomographie (QMRT) ist eine nicht-invasive Methode zur Messung von Körperzusammensetzungen. Sie hat ein großes Potential, Untersuchungen zu Energetik und „Treibstoff“-Nutzung von Zugvögeln voranzubringen. Es gibt jedoch Bedenken, ob das starke Magnetfeld während der QMRT-Analyse Auswirkungen auf den auf Magnetit basierenden und für Orientierung und Navigation wichtigen Magnetsinn der Zugvögel haben könnte. Wir benutzten Radiotelemetrie und Wiederfänge beringter Vögel, um die QMRT-Analyse auf mögliche Effekte auf Rastdauer und auf die Orientierung beim Abflug zu testen. Die Radiotelemetrie ergab keinerlei Nachweise dafür, dass sich die QMRT-Analyse auf die kurze Dauer eines Zwischenstopps oder auf die Orientierung beim Abflug auswirkte. Getestet wurde dies für den Blaurücken-Waldsänger (Setophaga caerulescens) im Frühjahr und im Herbst und für den Magnolien-Waldsänger (Setophaga magnolia) im Frühjahr. Fang-Wiederfang-Analysen bei Weißkehlammern (Zonotrichia albicollis) zeigten keine Effekte der QMRT auf Durchzug und Wiederfang-Wahrscheinlichkeit, aber einen leichten Anstieg der Rastdauer (in Tagen) während des Herbstzugs. Unsere Untersuchung belegt, dass durch eine QMRT-Analyse weder die Rastdauer noch die Orientierung beim Abflug von Zugvögeln signifikant beeinflusst sind, ausgenommen der anhand von Wiederfang-Modellen geschätzten Rastdauer im Herbst. QMRT zeigt sich als eine sichere Methode für Freilanduntersuchungen.

References

  1. Åkesson S, Backman J (1999) Orientation in Pied Flycatchers: the importance of magnetic and visual information at dusk. Anim Behav 57:819–828CrossRefPubMedGoogle Scholar
  2. Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66:912–918CrossRefGoogle Scholar
  3. Bächler E, Schaub M (2007) The effects of permanent local emigration and encounter technique on stopover duration estimates as revealed by telemetry and mark-recapture. Condor 109:142–152CrossRefGoogle Scholar
  4. Beason RC (2005) Mechanisms of magnetic orientation in birds. Integr Comp Biol 45(3):565–573CrossRefPubMedGoogle Scholar
  5. Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379CrossRefPubMedGoogle Scholar
  6. Blakemore R, Frankel R, Kalmijn AD (1980) South-seeking magnetotactic bacteria in the southern hemisphere. Nature 286:384–385CrossRefGoogle Scholar
  7. Bonter D, Brooks E, Donovan T (2008) What are we missing with only ground-level mist nets? Using elevated mist nets at a migration stopover site. J Field Ornithol 79:314–320CrossRefGoogle Scholar
  8. Caccamise D, Hedin R (1985) An aerodynamic basis for selecting transmitter loads in birds. Wilson Bull 97(3):306–318Google Scholar
  9. Cochran W, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408CrossRefPubMedGoogle Scholar
  10. Cooch E, White G (2001) Program MARK: a gentle introduction manual. Cornell University, IthacaGoogle Scholar
  11. Calvert AM, Bonner SJ, Jonsen ID, Mills Flemming J, Walde SJ, Taylor PD (2009) A hierarchical Bayesian approach to multi-state mark-recapture: simulations and applications. J Appl Ecol 46(3):610–620CrossRefGoogle Scholar
  12. Davila AF, Winklhofer M, Shcherbakov VP, Peterson N (2005) Magnetic pulse affects a putative magnetoreceptor mechanism. Biophys J 89(1):56–63CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360CrossRefPubMedGoogle Scholar
  14. Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36CrossRefPubMedGoogle Scholar
  15. Goymann W, Spina F, Ferri A, Fusani L (2010) Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry. Biol Lett 6(4):478-481CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guglielmo C, McGuire L, Gerson A, Seewagen C (2011) Simple, rapid and non-invasive measurement of fat, lean and total water masses of live birds using quantitative magnetic resonance. J Ornithol. doi:10.1007/s10336-011-0724-z Google Scholar
  17. Hedenstrom A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234CrossRefPubMedGoogle Scholar
  18. Heise C, Moore F (2003) Age-related differences in foraging efficiency, molt and fat deposition of gray catbirds prior to autumn migration. Condor 105:496–504CrossRefGoogle Scholar
  19. Henshaw I, Fransson T, Jakobsson S, Kullberg C (2010) Geomagnetic field affects migratory direction in long distant migrant. Behav Ecol Sociobiol 64:1317–1323CrossRefGoogle Scholar
  20. Holland R (2010) Differential effects of magnetic pulses on the orientation of naturally migrating birds. J R Soc Interface 7:1617–1625CrossRefPubMedPubMedCentralGoogle Scholar
  21. Holland R, Helm B (2013) A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J R Soc Interface 10(81):20121047CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lebreton J, Pradel R (2002) Multistate recapture models: modelling incomplete individual histories. J Appl Stat 29:353–369CrossRefGoogle Scholar
  23. Lindberg MS (2010) A review of designs for capture-mark-recapture studies in discrete time. J Ornithol. doi:10.1007/s10336-010-0533-9 Google Scholar
  24. Lindberg MS, Rexstad EA (2002) Capture-recapture sampling designs. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, 1st edn. Wiley, Chichester, pp 251–262Google Scholar
  25. Mackenzie S (2010) A scale-dependent examination of stopover decisions in migratory passerines at Long Point, Ontario. M.Sc. dissertation, University of Western OntarioGoogle Scholar
  26. Marchetti K, Price T (1989) Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biol Rev 64:51–70CrossRefGoogle Scholar
  27. Matthews SN, Rodewald PG (2010) Urban forest patches and stopover duration of migratory Swainson’s Thrushes. Condor 112(1):96–104CrossRefGoogle Scholar
  28. McGuire LP, Guglielmo CG, Mackenzie SA, Taylor PD (2012) Migratory stopover in the long-distance migrant Silver-haired Bat, Lasionycteris noctivagans. J An. Ecol 81:377–385CrossRefGoogle Scholar
  29. Mills AM (2016) Banding data reveal bias in age-class sampling of songbirds during spring migration. J Field Ornithol. doi:10.1111/jofo.12156 Google Scholar
  30. Mills AM, Thurber BG, Mackenzie SA, Taylor PD (2011) Passerines use nocturnal flights for landscape-scale movements during migration stopover. Condor 113(3):597–607CrossRefGoogle Scholar
  31. Mouritsen H, Ritz T (2005) Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 15(4):406–414CrossRefGoogle Scholar
  32. Muheim R, Bäckman J, Åkesson S (2002) Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J Exp Biol 205(24):3845–3856PubMedGoogle Scholar
  33. Muheim R, Phillips J, Åkesson S (2006) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839CrossRefPubMedGoogle Scholar
  34. Muheim R, Åkesson S, Phillips JB (2007) Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset. J Ornithol 148(S2):485-494CrossRefGoogle Scholar
  35. Munro U, Munro JA, Phillips JA, Wiltschko W (1997) Effect of wavelength of light and pulse magnetization on different magnetoreception systems in a migratory bird. Aust J Zool 45(2):189–198CrossRefGoogle Scholar
  36. Newton I (2008) The ecology of bird migration. Academic, LondonGoogle Scholar
  37. Nilsson C, Klassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845CrossRefPubMedGoogle Scholar
  38. Pyle P, Howell SN, David FY (1997) Identification guide to North American birds (No. C/598.297 P9)Google Scholar
  39. Rappole J, Tipton A (1991) New harness design for attachment of radio transmitters to small passerines (Nuevo Diseñode Arnés para Atar Transmisores a Passeriformes Pequeños). J Field Ornithol 62(3):335–337Google Scholar
  40. Salewski V, Schaub M (2007) Stopover duration of Palearctic passerine migrants in the western Sahara–independent of fat stores? Ibis 149(2):223–236CrossRefGoogle Scholar
  41. Schaub M, Jenni L (2001) Stopover durations of three warbler species along their autumn migration route. Oecologia 128(2):217–227CrossRefGoogle Scholar
  42. Schaub M, Liechti F, Jenni L (2004) Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim Behav 67:229–237CrossRefGoogle Scholar
  43. Schaub M, Pradel R, Lebreton J (2001) Migrating birds stop over longer than usually thought—an improved capture-recapture analysis. Ecol 82:852–859Google Scholar
  44. Seewagen CL, Guglielmo CG (2010) Effects of fat and lean body mass on migratory landbird stopover duration. Wilson J Ornithol 122(1):82–87CrossRefGoogle Scholar
  45. Seewagen CL, Guglielmo CG (2011) Quantitative magnetic resonance analysis and a morphometric predictive model reveal lean body mass changes in migrating Nearctic-Neotropical passerines. J Comp Physiol B 181(3):413–421CrossRefPubMedGoogle Scholar
  46. Seewagen CL, Slayton EJ, Guglielmo CG (2010) Passerine migrant stopover duration and spatial behaviour at an urban stopover site. Acta Oecol 36:484–492CrossRefGoogle Scholar
  47. Simons T, Moore F, Gauthreaux S (2004) Mist netting trans-Gulf migrants at coastal stopover sites: the influence of spatial and temporal variability on capture data. Stud Avian Biol 29:135–143Google Scholar
  48. Sol D, Santos D, Garcia J, Cuadrado M (1998) Competition for food in urban Pigeons: the cost of being juvenile. Condor 100(2):298–304CrossRefGoogle Scholar
  49. Taylor P, Mackenzie S, Thurber B, Calvert A, Mills A, McGuire L, Guglielmo C (2011) Landscape movements of migratory birds and bats reveal an expanded scale of stopover. PLoS One 6(11):e27054. doi:10.1371/journal.pone.0027054 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Thurber B (2010) Daily flight timing and movement strategies of migration landbirds: importance of local wind patterns. M.Sc. dissertation, University of Western OntarioGoogle Scholar
  51. Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484(7394):367–370PubMedGoogle Scholar
  52. Vanderhoff E, Eason P (2007) Disparity between adult and juvenile American Robins Turdus migratorius foraging for ground invertebrates and cherry fruits. Ethol 113:1212–1218CrossRefGoogle Scholar
  53. Vanderhoff E, Eason P (2008) Comparisons between juvenile and adult American Robins foraging for mulberry fruit. Wilson J Ornithol 120:209–213CrossRefGoogle Scholar
  54. White CG, Burnham KP (1999) Program MARK: survival estimations from populations of marked animals. Bird Stud 46:120–139CrossRefGoogle Scholar
  55. Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Zoophysiol 33:261–288Google Scholar
  56. Wiltschko W, Wiltschko R (2002) Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften 89(10):445–452CrossRefPubMedGoogle Scholar
  57. Wiltschko W, Ford H, Munro U, Winklhofer M, Wiltschko R (2007) Magnetite-based magnetoreception: the effect of repeated pulsing on the orientation of migratory birds. J Comp Physiol A 193:515–522CrossRefGoogle Scholar
  58. Zapka M, Heyers D, Hein C, Engels S, Schneider N, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild J, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nat 461:1274–1277CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  • Lisa V. Kennedy
    • 1
  • Yolanda E. Morbey
    • 1
  • Stuart A. Mackenzie
    • 2
  • Philip D. Taylor
    • 2
    • 3
  • Christopher G. Guglielmo
    • 1
  1. 1.Department of Biology, Advanced Facility for Avian ResearchWestern UniversityLondonCanada
  2. 2.Bird Studies Canada-Long Point Bird ObservatoryPort RowanCanada
  3. 3.Department of BiologyAcadia UniversityWolfvilleCanada

Personalised recommendations